Most of the cultural assets in Korea are wooden structures. Due to the material characteristics of wood, the preservation of traditional wooden structure is impossible by simple maintenance. Damaged member is replaced with new member or completely dissolve and restore them. But member has a cultural value, so that it is impossible to arbitrarily replace each member. Although the preservation treatment method using synthetic resin is emphasized, there is no exact standard for proper reinforcement ratio. This paper is experimental study for reinforcement ratio of wooden flexural member with synthetic resins, Reinforced ratio on section area of flexural member. As a result, synthetic resin reinforcement are selected as experimental variables by proper ratio enhanced flexural capacity of reinforced wooden member than new wooden member.
The flexural strength of lightweight aggregate concrete (LWAC) T-beams reinforced with the minimum amount of longitudinal reinforcement could be conservatively predicted by the conventional procedure using the equivalent stress block specified in concrete code provision.
The minimum reinforcement ratio is an important design factor to prevent a brittle failure in RC flexural members. A minimum reinforcement ratio is presented by assuming an effective depth of cross-section and moment arm lever in CDC and KHBDC. In this study, it suggests that a rational method for minimum reinforcement ratio is calculated by material model and force equilibrium. As results, a minimum reinforcement ratio using a p-r curve in KHBDC is evaluated about 52~80% of recent design code’s value and it induces an economical design. And also, a ductility capacity in case of placing this minimum reinforcement amount is evaluated about 89% of recent design code’s value, but ductility in a member is 7 or more, so it has a sufficient ductility capacity. Therefore, it is judged that a minimum reinforcement ratio using p-r curve has a theoretical rationality, safety and economy in a flexural member design.
A minimum reinforcement ratio is an important factor to prevent a brittle failure for RC flexural members. In this paper, a parametric study of minimum reinforcement ratio is performed according to concrete strength, steel yield strength and cover depth ratio for each design provisions. A minimum reinforcement ratio using a stress-strain model is suggested. And results show that this mode is able to reflect material strength and cross-section properties properly.
휨철근 대체재로 FRP Bar를 사용한 콘크리트 보에 대하여 휨보강근비의 변화에 따른 콘크리트의 전단강도를 일련의 콘크리트 보 실험을 통하여 조사하였다. 실험 결과, 콘크리트의 전단강도는 RC보의 경우보다는 낮은 값으로 나타났지만, 휨보강근비가 증가함에 따라 전단강도도 증가하는 것으로 분석되었다. 문헌에 제안된 식과 실험결과의 회귀분석을 이용하여 FRP Bar의 종류 및 휨보강근비를 고려한 전단강도보정계수를 제안하였다.