최근 지구 온난화의 영향으로 태풍의 파괴력이 증가함에 따라 부유식 해상풍력발전기의 막대한 유실과 붕괴에 대한 우려가 깊어지고 있다. 부유식 해상풍력발전기의 안전한 운영을 위해 새로운 형태의 탈착형 계류 시스템 개발이 요구되고 있다. 본 연구에서 고 려한 새로운 반잠수식 계류 풀리는 기존의 탈착형 계류 장치에 비해 계류 라인으로 부유식 해상풍력 터빈을 보다 쉽게 탈부착할 수 있도 록 고안되었다. 8MW급 부유식 해상풍력발전기에 적용 가능한 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 검토하기 위해 3D 프린터를 이용하여 축소구조모형을 제작하고, 이 모형에 대한 구조시험을 수행하였다. 축소 모형의 구조시험을 위해 3D 프린팅에 사 용된 ABS 소재의 인장 시편을 제작하고 인장시험을 수행하여 소재의 물성을 평가하였다. 인장시험에서 얻은 재료 특성과 축소모형 구조 시험과 동일한 하중 및 경계 조건을 적용하여 반잠수식 계류 풀리의 유한요소해석을 수행하였다. 유한요소해석을 통해 반잠수식 계류 풀 리의 구조적 취약 부분을 검토하였다. 반잠수식 계류 풀리의 주요 하중조건을 고려하여 구조모형시험을 수행하였으며, 재료의 최대인장 응력 이상이 발생하는 위치에 대해 유한요소해석과 시험 결과를 비교하였다. 유한요소해석과 모형시험의 결과로부터 작동조건에서는 Body와 Wheel의 연결부 구조가 취약한 것으로 파악되었고, 계류조건에서는 Body와 Chain stopper의 연결부 구조가 취약한 것으로 검토되었 다. 축소모형 구조시험에서 나타난 SMP의 구조 취약부는 구조해석의 결과와 일치하는 것으로 나타났다. 연구 결과를 통해 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 실험적으로 검증할 수 있었다. 또한, 본 연구 결과는 상세설계 단계에서 반잠수식 계류 풀리의 구조 강도를 향상시키는데 유용하게 활용될 수 있을 것으로 판단된다.
일반적으로 부유식 해상풍력발전 에너지의 수급성과 효율을 극대화하기 위해서는 하부구조물의 파랑 감쇠로 인한 운동을 저 감시키는 것이 중요하다. 선행 연구들에 따르면 파도 중 하부구조물에 설치된 감쇠판에 의해서 발생한 와류점성으로 인해 운동 응답이 감소되는 것으로 나타났다. 본 연구에서는 5MW급 반잠수식 OC5 플랫폼과 감쇠판이 부착된 두가지 플랫폼을 설계하고, 와류점성으로 인 한 운동저감효과를 확인하기 위해 자유감쇠실험과 수치계산을 수행하였다. 모형시험 결과로 낙하 높이를 30 mm, 40 mm, 50 mm에서의 상하 자유감쇠실험을 수행하였을 때 OC5 플랫폼 대비 두 가지의 형태의 감쇠판이 부착된 플랫폼이 상대적으로 운동감쇠성능이 향상되었다. 모형시험과 수치계산 결과에서 형상화한 감쇠판 모델(KSNU Plate 1, KSNU Plate 2)들이 각각 OC5 대비 상하운동 진폭이 1.1배, 1.3배 각각 감소했으며, KSNU Plate 2 플랫폼은 KSNU Plate 1 플랫폼보다 OC5 대비 약 2배 감쇠성능이 좋아진 것으로 나타났다. 본 연구에서는 감쇠 판의 면적과 와류점성이 상하동요의 감쇠율과 밀접한 관련을 보여준다.
This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.
신재생, 친환경 에너지에 대한 관심의 증가로 최근 상당수의 풍력 발전기가 설치되고 있다. 특히, 육상과 달리 부지 확보의 어려움도 없고 고품질의 바람을 얻을 수 있다는 점에서 해상 풍력 발전기가 더욱 주목을 받고 있다. 이와 같은 장점을 가진 해상 풍력 발전기는 육상의 조선소 등에서 제작된 후, 해상 크레인을 이용하여 운용 지점까지 이송되어 설치되는데, 이때 그 크기의 거대함과 고가라는 이유로 무엇보다 안전이 보증되어야 한다. 따라서 본 연구에서는 해상 풍력 발전기의 이송 및 설치 시 안전성을 보증하기 위한 근거로서, 다물체계 동역학 기법을 활용하여 해상 크레인에 연결된 해상 풍력 발전기의 동역학 해석을 수행하였다. 그 결과, 본 기법이 해상 풍력 발전기의 이송 및 설치방법에 대한 검증용으로 충분히 활용 가능함을 확인할 수 있었다.
본 연구에서는 부유식 해상 풍력 발전기의 로터 축과 타워 상단에 작용하는 동적 하중을 계산하였다. 부유식 해상 풍력 발전기는 부유식 플랫폼, 타워, 낫셀, 허브, 그리고 3개의 블레이드로 구성되어 있는 다물체계 시스템이다. 본 연구에서는 이들 모두를 각각 6 자유도를 갖는 강체로 가정하였다. 부유식 해상 풍력 발전기의 타워는 플랫폼에 고정되어 있고, 3개의 블레이드는 허브에 고정되어 있다. 낫셀은 타워의 상부에 회전 관절로 연결되어 있으며, 블레이드와 허브로 구성된 로터는 낫셀과 회전 관절로 연결되어 있다. 본 연구에서 부유식 풍력 발전기의 운동 방정식은 다물체계 동역학을 기반으로 한 운 동방정식 구성 방법 중 하나인 recursive formulation을 이용하여 구성하였다. 외력으로는 부유식 플랫폼에 작용하는 비선 형 유체 정역학 힘과 선형 유체 동역학적 힘 그리고 계류력을 고려하였고, 블레이드에 작용하는 풍력을 고려하였다. 이와 같이 구성한 운동 방정식을 해를 구하여 풍력 발전기를 구성하고 있는 각 요소들의 각 연결 부위에 작용하고 있는 구속력 을 계산하였다. 그 결과, 동적 상태에서 풍력 발전기에 작용하는 하중은 정적 상태에서 풍력 발전기에 작용하는 하중보다 큰 것을 알 수 있으며, 따라서 부유식 풍력 발전기의 구조해석의 입력 값으로서 정적 하중보다 동적 하중을 고려하는 것이 더 엄격한 해석 기준이라고 할 수 있다.