Given the hazards posed by black ice, it is crucial to investigate the conditions that contribute to its formation. Two ensemble machinelearning algorithms, Random Forest (RF) and Extreme Gradient Boosting (XGBoost), were employed to forecast the occurrence of black ice using atmospheric data. Additionally, explainable artificial intelligence techniques, including Feature Importance (FI) and partial dependence Plot (PDP), were utilized to identify atmospheric conditions that significantly increase the likelihood of black ice formation. The machinelearning algorithms achieved a forecasting accuracy of 90%, demonstrating reliable performance. FI analysis revealed distinct key predictors between the algorithms: relative humidity was the most critical for RF, whereas wind speed was paramount for XGBoost. The PDP analysis identified the specific atmospheric conditions under which black ice was likely to form. This study provides detailed insights into the atmospheric precursors of frost/fog-induced black ice formation. These findings enable road managers to implement proactive winter road maintenance strategies, such as optimizing anti-icing patrol routes and displaying warnings on various message signs, thereby enhancing road safety.
Fog may have a significant impact on road conditions. In an attempt to improve fog predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, multinomial logistic regression, neural network and support vector machine. To validate machine learning models, the results from the simulation was compared with the fog data observed over Jeju(184 ASOS site) and Gosan(185 ASOS site). Predictive rates proposed by six data mining methods are all above 92% at two regions. Additionally, we validated the performance of machine learning models with WRF (weather research and forecasting) model meteorological outputs. We found that it is still not good enough for operational fog forecast. According to the model assesment by metrics from confusion matrix, it can be seen that the fog prediction using neural network is the most effective method.