검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        To ensure the maintenance of the nuclear emergency response system, it is important to periodicaly conduct hazard assessments using up-to-date input variables. The results of this review are apllied to drills and exercises, enabling the inspection of emergency plan and response procedures. Therefore, this study aims to analyze off-site consequences according to the occurrence time of the Design Basis Accident (DBA) for the Hanaro Fuel Fabrication Facility (HFFF) by using the recent site-specific meteorological data and to review the appropriateness of urgent protective measures. MELCOR and SafeHanaro computer codes were used for radiation source-term estimation and environmental impact assessment, respectively. It was assumed that radioactive materials are released into environment for 2 hours due to the fire during the nuclear fuel sieving process. The following 12 scenarios for each occurrence time period was selected (0 am, 2 am, 4 am, 6 am, 8 am, 10 am, 12 pm, 2 pm, 4 pm, 6 pm, 8 pm, 10 pm) and the effective dose and thyroid dose in earlyand intermediate-phase were assessed. As a result, the most severe exposure-induced accident scenario is found to be as occurring at 0 am on July 15th, with the Most Exposed Individual (MEI) positioned 200 meters downwind from the facility. The committed effective dose for MEI is identified as to be 2.97E-02 mSv which has a significant margin against the IAEA's (Generic Intervention Level) GIL and (Generic Criteria) GC. During the passage of the radio-active plume, the estimated effective dose and thyroid dose due to inhalation were 2.97E-02 mSV (99.99%) and 5.06E-05 mSv (99.77%), respectively. External exposure appeared to be negligible. Meanwhile, the thyroid dose is noticeably below the criteria for decision-making for distribution of Potassium Iodide (KI). Accordingly, in order for local residents to participate in the exercise and drills, it is essential to develop scenarios considering simultaneous emergencies at multi-facilities and latenight accidents. In conclusion, this results will be used to improve the exercise plans for enhancing the nuclear or radiological emergency competencies of the KAERI.
        2.
        2022.10 구독 인증기관·개인회원 무료
        Material balance evaluation is an important measure to determine whether or not nuclear material is diverted. A prototype code to evaluate material balance has been developed for uranium fuel fabrication facility. However, it is difficult to analyze the code’s functionality and performance because the utilization of real facility data related to material balance evaluation is very limited. It is also restricted to deliberately implement various abnormal situations based on real facility data, such as nuclear diversion condition. In this study, process flow simulator of uranium fuel fabrication facility has been developed to produce various process data required for material balance evaluation. The process flow simulator was developed on the basis of the Simulink-SimEvents framework of the MathWorks. This framework is suitable for batch-based process modeling like uranium fuel fabrication facility. It dynamically simulates the movement of nuclear material according to the time function and provides process data such as nuclear material amount at inputs, outputs, and inventories required for Material Unaccounted For (MUF) and MUF uncertainty calculation. The process flow simulator code provides these data to the material balance evaluation code. And then the material balance evaluation code calculates MUF and MUF uncertainty to evaluate whether or not nuclear material is diverted. The process flow simulator code can simulate the movement of nuclear material for any abnormal situation which is difficult to implement with real process data. This code is expected to contribute to checking and improving the functionality and performance of the prototype code of material balance evaluation by simulating process data for various operation scenarios.