During the decades after the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, ambient dose rates have markedly decreased when compared to those at the early state of the accident. Government projects have been continuously conducted by surveying the ambient dose rate and radiocesium distributions. Airborne surveys using crewed helicopters and unmanned aerial vehicles (UAVs) are the best methods for obtaining an overall picture of the distribution. However, ground-based surveys are required for accurate measurements near the population. The differences between these methods include the knowledge of the post depositional behavior of radionuclides in land use. The survey results form the basis for policy decisions such as lifting evacuation zones, decontamination, and other countermeasures. These surveys contain crucial findings regarding post-accident responses. This paper reviews the survey methods of government projects and current situation around the FDNPS. The visualization methods and databases of ambient dose rates are also reviewed to provide information to the population.
Solid radioactive waste such as rubble, trimmed trees, contaminated soil, metal, concrete, used protective clothing, secondary waste, etc. are being generated due to the Fukushima nuclear power plant accident occurred on March 11, 2011. Solid radioactive waste inside of Fukushima NPP is estimated to be about 790,000 m3. The solid radioactive waste includes combustible rubble, trimmed trees, and used protective clothing, and is about 290,000 m3. These will be incinerated, reduced to about 20,000 m3 and stored in solid waste storage. The radioactive waste incinerator was completed in 2021. About 60,000 m3 of rubble containing metal and concrete with a surface dose rate of 1 mSv/h or higher will be stored without reduction treatment. Metal with a surface dose rate of 1 mSv/h or less are molten, and concrete undergoes a crushing process. About 60,000 m3 of contaminated soil (0.005 ~1 mSv/h) will be managed in solid waste storage without reduction treatment. The amount of secondary waste generated during the treatment of contaminated water is about 6,500 huge tanks, and additional research is being conducted on future treatment methods.
Attention has been paid to the source term released after Chernobyl and Three Mile Island (TMI), which were the representative accidents of nuclear power plants, and has been studied several times in order to predict and evaluate radiation source term, which can be released in the event of a virtual accident. In particular, the impact of the accident was assessed on the basis of Deterministic Safety Analysis (DSA) and after the WASH-1400, the technology of the Probabilistic Safety Assessment (PSA) was introduced, supplementing safety by taking into account the existence of uncertainty. After the Fukushima accident, a SOARCA report was published to evaluate the specific classification of each type of accident, the realistic progress of the accident, and the leakage of radioactive materials. In this paper, the evaluation methodology and results of the source term of severe accident before and after the Fukushima accident were compared, and the evaluation methods applied to domestic nuclear power plants were compared. Prior to the Fukushima accident, the behavior of the accident and source term were evaluated for Loss of Coolant Accident (LOCA), which led to design based accidents, Total Loss of Feed Water (TLOFW) followed by Station Blackout (SBO) the results were compared to Chernobyl and TMI based on the resulting data to evaluate safety and reliability. After the Fukushima accident, the Interfacing System Loss of Coolant Accident (ISLOCA) and the Steam Generator Tube Rupture (SGTR), which is classified as containment’s bypass accident, were included for predictive assessment. This is due to the analysis that the risk of cancer and early mortality are affected. MACST facilities and strategies were added to domestic nuclear power plants, and accidents with a high core damage frequency were mainly interpreted. In addition, source term was evaluated with the addition of a Basement Melt-Through (BMT) accident that had not previously been considered as a focus. As a result of the comparison of source term evaluation, accidents can be caused by a number of unidentified problems, and Korea’s experience on Level 2 and 3 has not been accumulated, making it difficult to predict the results of source term evaluation or lack of reliability.
The Fukushima nuclear power plant accident, which was caused by the Great East Japan Earthquake on March 11, 2011, is of great concern to the Korean people. The scope of interest is wide and diverse, from the nuclear accident itself and the damage situation, to the current situation in Fukushima Prefecture and Japan, and to the safety of Japanese agricultural and fishery products. Concerns about nuclear safety following the Fukushima nuclear accident have a significant impact on neighboring nation’s energy policy. It has been 11 years since the Fukushima nuclear accident. In neighboring nation society, the nature and extent of damage caused by the Fukushima nuclear accident, the feasibility of follow-up measures at home and abroad, the impact on neighboring nations, and the direction of nuclear policy reflecting the lessons of the accident are hotly debated topics. Recently, the controversy has grown further as it is intertwined with Japan’s concerns about the safety and discharge of the contaminated water into the sea, and conflicts over domestic nuclear power policies. About 1.29 million tons, as of March 24, 2022, of the contaminated water are generated, which is close to the 1.37 million tons of water storage capacity. In response, the Japanese government announced on April 13, 2021, that it plans to discharge the contaminated water into the sea from 2023. This study evaluates the amount of the contaminated water that has passed through the ALPS and reviews the preparations and related facilities for ocean discharge after diluting the contaminated water. In addition, it is intended to forecast the various impacts of ocean discharge.
후쿠시마 원전사고 이후 광역의 방사성 오염부지가 발생되었으며, 이에 대한 제염작업으로 인하여 다량의 제염폐기물이 발 생하였다. 일본에서는 이를 보관하기 위하여 각 지역에 임시저장시설이 운영되고 있으며, 이들 시설들은 피난지시해제가 이루어진 지역의 일반인에 대하여 방사선학적 영향을 미칠 것으로 판단된다. 본 연구에서는 임시저장시설 인근에 거주하 는 일반인의 방사선학적 안전성 확보를 위하여 임시저장시설 특성에 따른 거리별 공간 방사선량률 및 선량제한치를 만족하 는 임시저장시설로부터의 이격거리를 평가하였다. 이를 위해 임시저장시설의 형태 및 크기, 복토 두께 등을 고려하였으며, MCNPX를 이용하여 방사선량률을 평가하였다. 복토에 의한 차폐효과는 두께가 10 cm일 때 68.9%, 30 cm일 때 96.9%, 50 cm 일 때 99.7%로 나타났다. 임시저장시설 형태에 따른 공간 방사선량률은 지상 보관형일 때 가장 높게 나타났으며, 이어서 반 지하 보관형, 지하 보관형일 순으로 나타났다. 임시저장시설 크기에 따른 공간 방사선량률은 5 × 5 × 2 m 시설을 제외한 시 설에 대하여 유사하게 나타났다. 이는 임시저장시설 내 적재된 제염폐기물에 의하여 자기차폐가 이루어지기 때문이다. 최종 적으로 크기가 50 × 50 × 2 m이고, 복토가 없는 임시저장시설의 경우, 지상 보관형의 평가된 이격거리는 14 m(최소농도), 33 m(최빈농도), 57 m(최대농도)이며, 반지하 보관형의 이격거리는 9 m(최소농도), 24 m(최빈농도), 45 m(최대농도), 지하 보관형의 이격거리는 6 m(최소농도), 16 m(최빈농도), 31 m(최대농도)로 나타났다.
Many countries have introduced new imported food safety measures, following the accident at Fukushima Daiichi Nuclear Power Station. This study was conducted to evaluate the measures contents and effects on food trades values. Eight percent of members were notified the introduced measures to the World Trade Organization. The measures’ contents were banning imports, enhancing inspection and adding certification requirement. The covered regions were some prefectures, entire Japan or all affected countries. European Union introduced a measure that subjecting foods originating from 12 prefectures to import at designated ports with required certification. The measures were amended 8 times until March 2014 to apply listed foods from 15 prefectures. The trade value of fishery products and miscellaneous foods were affected. Australia introduced a measure that required additional inspection of dairy, fishery and plants products from 13 prefectures with subsequent amendments. The trade value had no effect in tested foods. Chinese Taipei introduced a temporary import ban for all foods from 6 prefectures. Trade values for fruits were affected. The United States issued an import alert for detention without examination for listed prefectures and goods without introducing new measures. Although no specific products were affected, trade values for all foods were affected.