검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.02 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This study investigated the immune-enhancing effects of polysaccharides extracted from Gloiopeltis furcata (red seaweed) with different molecular weights. A crude polysaccharide mixture was hydrolyzed using acid treatment (0.1 N HCl) and three molecular weight fractions were generated and filtered using centrifugation: (≤10 kDa, 10 to 100 kDa, and 100 kDa. Nitric oxide (NO) production in RAW264.7 cells treated with 0.01-0.5 μg/mL polysaccharides ≥100 kDa was 12.28-19.05 μM. Treatment with polysaccharides ≥100 kDa increased cytokine levels, including TNF-α and IL-6 levels, in a dose-dependent manner. Polymerase chain reaction analysis also revealed marked increases in iNOS and COX-2 mRNA expression levels. These findings lead us to conclude that macrophage activation induced by polysaccharides ≥100 kDa was greater than that induced by polysaccharides ≤10 kDa or between 10 and 100 kDa. The polysaccharides ≥100 kDa extracted from Gloiopeltis furcata investigated herein are potentially useful as natural immune-enhancing agents. These findings provided further insights into the potential use of ≥100 kDa as immunopotentiator or new function food.
        2.
        2017.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, the physicochemical properties and anti-wrinkle effect of polysaccharides with different molecular weights from Gloiopeltis furcata were investigated. Crude polysaccharides were isolated by viscozyme treatment followed by ethanol precipitation and lyophilization. Crude polysaccharides were hydrolyzed by acid (0.1 N HCl) and the molecular weight fractions were generated by centrifugal filter (<10 kDa, 10 to 100 kDa, and 100 kDa>). The yield of polysaccharides with different molecular weight fractions was 8.4-39.6%. The major constituents in molecular weight fractions were total sugar (81.37-85.82%), uronic acid (27.89-32.85 g/100 g), sulfate (33.38-39.04%), and protein (0.35-3.16%) The L, a, and b value of the 100 kDa group were decreased, but viscosity increased. The oxygen radical absorbance capacity of the 100 kDa group at 180.07 μM was the highest among groups. The protective effects of 100 kDa group at 0.5 and 5 μg/mL against H2O2-induced cytotoxicity in L132 cell were 87.34% and 103.85%, respectively. The matrix metalloproteinase-1 activity of 100 kDa group decreased in a dose-dependent manner. The pro-collagen synthesis activity of 100 kDa group at 0.05-0.5 μg/mL was 64.91-77.80%. The polysaccharides with different molecular weights from Gloiopeltis furcata investigated herein are useful as a potential candidate for cosmedical materials.
        3.
        2017.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, the biological activities and physicochemical properties of polysaccharides from Gloiopeltis furcata were investigated. Polysaccharides were isolated by enzymes treatment (celluclast, flavourzyme, papain, termamyl, viscozyme) followed by ethanol precipitation and lyophilization. The yield of polysaccharides by enzymes treatment group were 52.8-66.4%. The major constituents in viscozyme treatment group were total sugar (71.04%), protein (7.22%), uronic acid (23.18 g/100 g), and sulfate (28.27%), respectively. The DPPH radical scavenging activity and ferric reducing antioxidant potential of the viscozyme treatment group at 5 mg/mL were 23.10% and 218.50 μM, respectively. The protective effects against H2O2-induced cytotoxicity in L132 cell of viscozyme treatment group at 1 μg/mL was 85.64%. The viscozyme treatment group increased the production of nitric oxide (NO) in a dose-dependent manner. The antitumor activity of viscozyme treatment group (at 25 μg/mL) in A549, HeLa, SNU719 and MCF7 was 69.57%, 52.74%, 61.06% and 68.64%, respectively. All of data showed that the biological activities and chemical characteristics of enzymes treatment group are higher than that of the control group. The polysaccharides isolated from Gloiopeltis furcata investigated herein are useful as functional materials agents.