검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 51

        5.
        2021.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption pro le was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption pro le is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model tting. We apply this updated MLSI to two sets of Hα and Ca ii line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We nd that the new version of the MLSI satisfactorily ts most of the observed line pro les of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral bril, an umbral feature, and a fast down ow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca ii 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.
        5,100원
        6.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the results of near-infrared imaging observations of the galaxy overdensity around the z = 1.44 radio-loud active galactic nucleus (AGN) 6CE1100+3505, which was carried out with the purpose of sampling the redshifted Hα emission from the actively star-forming galaxies that could constitute the overdensity. The existence of the structure around this AGN was spectroscopically confirmed by previous grism observations which are however limited to the central region. Using the CH4Off narrow/medium-band and H broad band filters in the Wide Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT), we constructed a sample of objects that show a flux excess in the CH4Off band due to line emission. The emission line flux is ∼ 4.9 × 10−16 erg s−1 cm−2 , corresponding to a star formation rate (SFR) of ∼ 50 M⊙ yr−1 for galaxies at redshifts z ∼ 1.4. None of the galaxies with medium-band flux excess is located within 1 Mpc from the central AGN, and there is no evidence that the selected galaxies are associated with the proposed cluster. Along with the star formation quenching near the center that was found from the previous grism observations, the lack of extreme starbursts in the structure suggests that at z ∼ 1.4, overdense regions are no longer favorable locations for vigorous star formation.
        4,000원
        11.
        2018.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the escape of Lyβ from emission nebulae with a significant population of excited hydrogen atoms in the level n = 2, rendering them optically thick in Hα. The transfer of Lyβ line photons in these optically thick regions is complicated by the presence of another scattering channel leading to re-emission of Hα, alternating their identities between Lyβ and Hα. In this work, we develop a Monte Carlo code to simulate the transfer of Lyβ line photons incorporating the scattering channel into Hα. Both Hα and Lyβ lines are formed through diffusion in frequency space, where a line photon enters the wing regime after a fairly large number of resonance scatterings with hydrogen atoms. Various line profiles of Hα and Lyβ emergent from our model nebulae are presented. It is argued that the electron temperature is a critical parameter which controls the flux ratio of emergent Lyβ and Hα. Specifically for T = 3 × 104 K and Hα line center optical depth α = 10, the number flux ratio of emergent Lyβ and Hα is ∼ 49 percent, which is quite significant. We propose that the leaking Lyβ can be an interesting source for the formation of Hα wings observed in many symbiotic stars and active galactic nuclei. Similar broad Hα wings are also expected in Lyα emitting halos found in the early universe, which can be potentially probed by the James Webb Telescope in the future.
        4,300원
        1 2 3