IEC 60079-10-1 edition 2.0, the global standard for hazardous area classification, was newly revised in 2015. There are many differences compared to the previous edition 1.0 version, first released in 2008, so it has caused confusion in the industry. In case of edition 1.0, the hazardous area extent can be derived through the mathematical formula, but in case of edition 2.0, there was the problem that the exact hazardous area extent was not known because of the mathematical formula of the plot for applying the hazardous area extent was not presented. In this study, we converted the plot introduced in edition 2.0 to CAD format and derived the plot as the mathematical equations. Through this, we suggest the hazardous area extent formula of three states (heavy gas, diffusive, jet). As the IEC committee did not provide the mathematical formula of the hazardous area extent according to the release characteristic, it is impossible to apply the exact hazardous area extent. In this study, a mathematical approach was derived for the plot introduced in edition 2.0, which can reduce the confusion of the applying hazardous area extent.
Classify of explosion hazardous areas must be made at the site where flammable materials are used. This reason is that it is necessary to manage ignition sources in of explosion hazardous areas in order to reduce the risk of explosion. If such an explosion hazard area is widened, it becomes difficult to increase the number of ignition sources to be managed. The method using the virtual volume currently used is much wider than the result using CFD(Computational Fluid Dynamics). Therefore, we tried to improve the current method to compare with the new method using leakage characteristics. The result is a realistic explosion hazard if the light gas is calibrated to the mass and the heavy gas is calibrated to the lower explosion limit. However, it is considered that the safety factors should be taken into account in the calculated correction formula because such a problem should be considered as a buffer for safety.