검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The detailed understanding of fluorescence emission processes is still unclear. This study demonstrates Aegle marmelos derived luminescent heteroatoms (N, Ca, K) doped carbon quantum dots (CQDs) using an economically and ecologically sustainable synthesis process without the necessity for any doping precursors due to its phytochemical, vitamin and mineral content. Carboxyl functionalization was done by adding lemon juice to the fruit extract. The morphological, physiochemical, compositional, crystallinity, and surface functional groups having heteroatom doped CQDs were analysed by HRTEM, EDX, XPS, XRD, FTIR etc. Besides, CQDs exhibited pH and solvent-dependent tuneable fluorescence characteristics. In fact, beyond pH 7.77, a protonation-deprotonation-driven red-shift was observed together with a decrease in the contribution of prominent peaks. Meanwhile, the features of solvatochromic fluorescence were examined in a range of aprotic and protic solvents with low and high polarity. Based on the studied Kamlet–Taft parameters and the obtained spectroscopic characterizations, a suitable fluorescence emission mechanism is provided. The observed solvatochromic fluorescence is thought to be caused by a combination of dipole moment polarisation, intramolecular charge transfer processes with or without H-bond stabilisation via the interaction of heteroatoms doped CQDs with solvent mediated by electron donation and acceptance from various surface functional groups such as hydroxyl, carboxyl with solvent molecules. Hence, this study is believed to promote the development of eco-tuneable fluorescent heteroatom doped CQDs and provide further insights into the fundamental fluorescence mechanisms, which include the relationship between morphology, surface properties and plausible quantum effects between CQDs and solvents.
        4,000원