검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ammonia is a potential fuel for producing and storing hydrogen, but its usage is constrained by the high cost of the noble metal catalysts to decompose NH3. Utilizing non-precious catalysts to decompose ammonia increases its potential for hydrogen production. In this study, carborundum (SiC)-supported cobalt catalysts were prepared by impregnating Co3O4 nanoparticles (NPs) on SiC support. The catalysts were characterized by high-resolution transmission electron microscope, X-ray photoelectron spectroscopy, temperature programmed reduction, etc. The results show that the large specific surface area of SiC can introduce highly distributed Co3O4 NPs onto the surface. The amount of Co in the catalysts has a significant effect on the catalyst structure, particle size and catalytic performances. Due to the interaction of cobalt species with SiC, the 25Co/SiC catalyst provided the optimal ammonia conversion of 73.2% with a space velocity of 30,000 mL gcat −1 h− 1 at 550 °C, corresponding to the hydrogen production rate of 24.6 mmol H2 gcat −1 min− 1. This research presents an opportunity to develop highly active and cost-effective catalysts for hydrogen production via NH3 decomposition.
        4,000원
        2.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (~820 m2 g–1) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (ΔEp) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of 5 mV s–1. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.
        4,000원
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to 1000°C, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at 900°C, the specific surface area of the resultant carbon aerogels reached 2309 m2 g–1. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.
        4,000원
        4.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of 703 m2 g−1, total pore volume of 0.51 cm3 g−1, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of 143 F g−1, high-rate performance, high energy density of 17.9-13.0Wh kg−1, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.
        4,000원
        5.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fisher-Tropsch synthesis for the production of hydrocarbon from syngas was investigated on 20% cobalt-based catalysts (20% Co/HSA, 20% Co/Si-MMS), which were prepared by home-made supports with high surface areas such as high surface alumina (HSA) and silica mesopores molecular sieve (Si-MMS). In the gas phase reaction by syngas only, 20% Co/Si-MMS catalyst was shown in higher CO conversion and lower carbon dioxide formation than 20% Co/HSA, whereas the olefin selectivity was higher in 20% Co/HSA than in 20% Co/Si-MMS. In the effect of n-hexane added in syngas, the selectivities of C5+ and olefin were increased by comparing the supercritical phase reaction with the gas phase reaction in addition to reduce unexpected methane and carbon dioxide.
        4,000원
        6.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the characteristics of surface ozone concentration and occurrence of high ozone concentration using hourly ozone, nitrogen dioxide and meteorological data for 1997∼1998 in Pusan coastal area. Monthly mean ozone concentration was the highest at Dongsamdong in Spring(35.4ppb), at Kwangbokdong in Fall(25.lppb) and the lowest Dongsamdong(22.2ppb) and Kwangbokdong(16.0ppb) in Winter. Relative standard deviation indicating clearness of observation site was 0.42 at Dongsamdong and 0.49 at Kwangbokdong that is similar to urban area. The diurnal variation of ozone concentration of Dongsamdong and Kwangbokdong showed maximum at 1500∼1600LST and minimum 0700∼0800LST that typical pattern of ozone concentration. In ozone episode period(Sept. 10∼15, 1998), diurnal change of ozone concentration was very high, and ozone concentration was related to meteorological parameters such as temperature, relative humidity, wind speed, cloud amount and radiation on a horizontal surface. During the episode days peak ozone concentrations are much higher than the normal values, wind speeds are always lower, and solar radiation is high with the exception of the September episode.