With the recent remarkable improvements in the average speeds of contemporary trains, a necessity has arisen for the development of new friction modifiers to improve adhesion characteristics at the wheel-rail interface. The friction modifier must be designed to reduce slippage or sliding of the trains’ wheels on the rails under conditions of rapid acceleration or braking without excessive rolling contact wear. In this study, a novel composite material consisting of metal, ceramic, and polymer is proposed as a friction modifier to improve adhesion between wheels and rails. A blend of Al-6Cu-0.5Mg metallic powder, Al2O3 ceramic powder, and Bakelite-based polymer in various weight-fractions is hot-pressed at 150oC to form a bulk composite material. Variation in the adhesion coefficient is evaluated using a high-speed wheel-rail friction tester, with and without application of the composite friction modifier, under both dry and wet conditions. The effect of varying the weighting fractions of metal and ceramic friction powders is detailed in the paper.
PURPOSES : The aim of this article is to compare and identify eco-friendly competitiveness between (regional) motorway and high-speed rail(HSR) from the perspective of CO2 emission in the Republic of Korea.
METHODS : In order for an analysis of low-carbon competitiveness between the two modes, CO2e emission, CO2eppk (equivalent CO2 gram per passenger kilometer), is employed as a comparison index. As for HSR, the index is calculated based on the passenger transport data and the gross of CO2e produced by Kyungbu high-speed line in 2013. Additionally, the gross of CO2e is computed by the greenhouse gas emission factors of domestic electricity generation mix. Regarding the index of motorway, it is directly calculated using both the official CO2e emission factor and the passenger-car occupancy of motorway.
RESULTS: The results revealed, in the case of inter-regional transport, that the CO2e emission of displacement-based cars is 54.9% less than that of HSR, as the domestic electric power systems heavily relies on the thermal power plants over 66%. Note that internal combustion engines commonly used for vehicles are more energy-efficient than steam-driven turbines usually utilized for thermal power generation.
CONCLUSIONS: It can be seen, at the very least in our study, that HSR has no superiority over motorway in the case of CO2e emission under the situations of domestic electricity generation mix. In addition, advanced eco-friendly vehicles have strong advantages over HSR. Therefore, all-out efforts should be made to develop and harvest renewable energy sources in order to achieve low-carbon HSR, sparing fossil fuels.
이 논문에서는 고속철도교량 설계를 위한 활하중 모델을 통계 및 확률적 방법으로 검토하고, 하중조합의 하중계수가 주는 안전율을 분석하였다. 이 연구는 철도교량 설계기준에 대한 한계상태설계법 개발의 일환이며, 이를 위하여 경부고속철도를 운행하는 열차를 대상으로 약 한달 동안 실측하여 데이터를 수집하고 분석하였다. 이 데이터를 대상으로 교량의 설계수명에 맞도록 4가지 통계 방법들을 적용하여 설계하중을 추정하여 비교․검토하였다. 또한, 철도교량의 설계하중조합이 주는 안전율을 검토하기 위하여 신뢰도지수를 구하고 이를 분석하였다. 실측 데이터로부터 추정한 활하중효과에 대하여, 현행 고속철도 설계활하중인 표준열차하중의 0.75배를 적용한 설계활하중 효과의 크기가 최소 30~22% 더 크게 나왔다. 신뢰도분석을 통하여, 극한한계상태만을 기준으로 본다면, 추가적인 하중계수 감소의 가능성이 있음을 알 수 있다.
With the rapid development of China's economy and the gradual maturity of high-speed rail technology, China's high-speed rail tourism is also developing. With the slow recovery of the COVID-19 epidemic and the slow recovery of the tourism industry, the high-speed rail tourism industry has also continued to grow, and the combination of high-speed rail and tourism has been studied in depth to meet market demand. In this diverse society, the development of high-speed rail tourism will be promoted, employment will be increased, and consumption will be stimulated, thereby promoting a better development of the society. This paper explains the current situation of high-speed rail tourism and the specific impact of high-speed rail on tourism, as well as the current status of high-speed rail tourism, in order to better promote the development of high-speed rail tourism, thereby promoting national economic and social development.
Recently, power distributed high-speed train with 430km/h(HEMU-430X) has developed in korea, 2012. However, the development of the train alone can not achieve the speed of high-speed rail system. So it needs the development of infrastructure system. In this paper, the project named “Application & technology development of high-speed rail infrastructure for 400km/h-class” being promoted in december 2010 will be introduced comprehensively.