CD63, a member of tetraspanin membrane protein family, plays pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic ‘Cys-Cys-Gly’ motif and ‘Cys188’ residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcript was upregulated the maximum 4.5 fold in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also made significant increase in the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.
Enhancing yield has been a major challenge of agriculture. In rice, tiller number is one of the important biomass and yield components. A maize mutant grassy tillers1 (gt1) increases lateral branches in maize. The GT1 gene encodes a class I homeodomain leucine zipper (HD-Zip) protein. In maize, the gt1 expression is induced by shading and is dependent on the activity of teosinte branched1 (tb1), a major domestication locus controlling tillering and lateral branching. To estimate the biological role and agricultural utility of gt1 in rice, rice homologue (OsGT1) has been isolated and its overexpressors and RNAi lines were generated. Field data showed that OsGT1 overexpressors reduced tillers and panicles while RNAi lines increased them, compared to wild type. Shade signal is an important factor in determining lateral branching. To understand the relationship between OsGT1 and shade avoidance, plants have been grown under 50% shading in the field. Also, double genetic combinations with phytochrome mutants (phyA, B, and C) are being examining for tillering phenotype. These ongoing researches will provide insights in determining the action of OsGT1 on branching and shade avoidance in rice.
The chlorination pattern of naphthalene vapor when passed through a 1 cm particle bed of 0.5% (mass) copper (II) chloride (CuCl2) mixed with silicon dioxide (SiO2) was studied. Gas streams consisting of 92% (molar) N2, 8% O2 and 0.1% naphthalene vapor were introduced to an isothermal flow reactor containing the CuCl2/SiO2 particle bed. Chlorination of naphthalene was studied from 100 to 400 °C at a gas velocity of 2.7 cm/s. Mono through hexachlorinated naphthalene congeners were observed at 250 °C whereas a broader distribution of polychlorinated naphthalenes (PCNs) including hepta and octachlorinated naphthalenes was observed at 300 °C. PCN production was peak at 250 °C with 3.07% (molar) yield, and monochloronaphthalene (MCN) congeners were the major products at two different temperatures. In order to assess the effect of a residence time on naphthalene chlorination, an experiment was also conducted at 300 °C with a gas velocity of 0.32 cm/s. The degree of naphthalene chlorination increased as a gas velocity decreased.