검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, porous Mo-5 wt% Cu with unidirectionally aligned pores is prepared by freeze drying of camphene slurry with MoO3-CuO powders. Unidirectional freezing of camphene slurry with dispersion stability is conducted at -25℃, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The green bodies are hydrogen-reduced at 750℃ and sintered at 1000℃ for 1 h. X-ray diffraction analysis reveals that MoO3- CuO composite powders are completely converted to a Mo-and-Cu phase without any reaction phases by hydrogen reduction. The sintered bodies with the Mo-Cu phase show large and aligned parallel pores to the camphene growth direction as well as small pores in the internal walls of large pores. The pore size and porosity decrease with increasing composite powder content from 5 to 10 vol%. The change of pore characteristics is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.
        4,000원
        2.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Freeze drying of a porous Cu-Sn alloy with unidirectionally aligned pore channels was accomplished by using a composite powder of CuO-SnO2 and camphene. Camphene slurries with CuO-SnO2 content of 3, 5 and 10 vol% were prepared by mixing with a small amount of dispersant at 50˚C. Freezing of a slurry was done at -25˚C while the growth direction of the camphene was unidirectionally controlled. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies were hydrogen-reduced at 650˚C and then were sintered at 650˚C and 750˚C for 1 h. XRD analysis revealed that the CuO-SnO2 powder was completely converted to Cu-Sn alloy without any reaction phases. The sintered samples showed large pores with an average size of above 100μm which were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores. The size of the large pores decreased with increasing CuO-SnO2 content due to the change of the degree of powder rearrangement in the slurry. The size of the small pores decreased with increase of the sintering temperature from 650˚C to 750˚C, while that of the large pores was unchanged. These results suggest that a porous alloy body with aligned large pores can be fabricated by a freeze-drying and hydrogen reduction process using oxide powders.
        4,000원