This study evaluates how road profile and speed affect tire loads of a hydrogen tube trailer using MSC Adams/Car multibody dynamics simulation. A tractor and trailer loaded with 64 high-pressure cylinders were modeled, and four representative road profiles flat, pothole, short-wave, and long-wave were applied at 30, 60, and 80 km/h. Vertical tire load time histories were extracted for five wheel positions. Flat roads yielded stable loads matching static distribution. Potholes produced short, high-amplitude impacts (up to 120 kN at 30 km/h) with reduced peaks at higher speeds. Short-wave profiles caused severe asymmetric roll loads (67 kN at 80 km/h), while long-wave inputs generated smoother, moderate increases over longer durations. Load amplification diminished toward trailer axles due to suspension energy dissipation. The results inform structural design of tube trailers and development of speed-control or active load-mitigation strategies for autonomous hydrogen transport vehicles.