LNG 방열 시스템의 선형 동적해석 모델을 사용하여 슬로싱 충격 압력을 구조해석에 적용 시 사용되는 이상화된 삼각파 압력에 대해서 검토하였다. 삼각파 압력의 최대값, 지속시간, 비대칭성의 충격파에 대한 구조 안전성 평가를 위해서 멤브레인 구조의 허용기준과 슬로싱 압력에 관련된 간략화된 파괴압력에 대해 검토하고, 슬로싱 충격 압력의 지속시간과 비대칭성으로 특징 지워진 이상화된 삼각파 형상의 압력을 고려한 일련의 선형 동적해석을 수행하여 설계기준으로 사용할 파괴압력을 도출하였다. 본 논문에서 제시한 방법을 통해서 방열시스템 구조 요소의 안전성을 평가하기 위한 파괴 압력을 선정할 수 있고 모형실험을 통한 슬로싱 압력과의 비교를 통하여 방열시스템의 구조안전성을 평가할 수 있을 것이라 판단된다. 또한 해석결과를 통해 방열시스템에서의 최대 응력은 매우 짧은 순간의 충격하중 하에서는 압력의 비대칭성 보다는 하중 지속시간에 많은 영향을 받고 있음을 검토하였다.
Hereditary dentin defects consist of dentin dysplasia(DD) and dentinogenesis imperfecta(DI). The DI associated with osteogenesis imperfecta has been classified as DI type I, whereas isolated inherited defects have been categorized as DI types II and III. However, whether DI type III should be considered a distinct phenotype or a variation of DI type II is debatable. Recent genetic findings have focused attention on the role of the dentin sialophosphoprotein(DSPP) gene in the etiology of inherited defects of tooth dentin. We have identified a novel mutation(c.727G → A, p.D243N) at the 243th codon of exon 4 of the DSPP gene in a Korean patient with DI type III. The radiographic and histologic features of the patient revealed the classic phenotype of shell teeth. These findings suggest that DI type II and III are not separate diseases but rather the phenotypic variation of a single disease.
Mammalian spermatogenesis occurs in a precise and coordinated manner in the seminiferous tubules. One of the attempts to understand the detailed biological process during mammalian spermatogenesis at the molecular level has been to identify the testis specific genes followed by study of the testicular expression pattern of the genes. From the subtracted cDNA library of rat testis prepared using representational difference analysis (RDA) method, a complimentary DNA clone encoding type III member of a DnaJ family protein, DnaJC18, was cloned (GenBank Accession No. DQ158861). The fulllength DnaJC18 cDNA has the longest open reading frame of 357 amino acids. Tissue and developmental Northern blot analysis revealed that the DnaJC18 gene was expressed specifically in testis and began to express from postnatal week 4 testis, respectively. In situ hybridization studies showed that DnaJC18 mRNA was expressed only during the maturation stages of late pachytene, round and elongated spermatids of adult rat testis. Western blot analysis with DnaJC18 antibody revealed that 41.2 kDa DnaJC18 protein was detected only in adult testis. Immunohistochemistry study further confirmed that DnaJC18 protein, was expressed in developing germ cells and the result was in concert with the in situ hybridization result. Confocal microscopy with GFP tagged DnaJC18 protein revealed that it was localized in the cytoplasm of cells. Taken together, these results suggested that testis specific DnaJC18, a member of the type III DnaJ protein family, might play a role during germ cell maturation in adult rat testis.
Arabidopsis atDjC53 and atDjC32 gene DnaJ-like protein homologous to DnaJ-like protein was characterized for the functional analysis of DnaJ-like protein. It was shown that atDjC53 and atDjC32 RNA expression is induced by heat shock stress and atDjC53- and atDjC32-GFP was targeted to the nucleus of protoplasts. The atDjC53 and atDjC32 promoter (1 kb) was isolated and fused to the GUS reporter gene to investigate gene regulation of atDjC53 and atDjC32 specific to heat shock stress or to developmental organ in the transgenic lines. RNAi and overexpression construct was employed to generate atDjC53 and atDjC32 knock-out plants for the study of their function. Molecular function of atDjC53 and atDjC32 is discussed in relation to heat shock and also developmental stages in Arabidopsis.
Arabidopsis atDjC53 and atDjC32 gene DnaJ-like protein homologous to DnaJ-like protein was characterized for the functional analysis of DnaJ-like protein. It was shown that atDjC53 and atDjC32 RNA expression is induced by heat shock stress and atDjC53- and atDjC32-GFP was targeted to the nucleus of protoplasts. The atDjC53 and atDjC32 promoter (1 kb) was isolated and fused to the GUS reporter gene to investigate gene regulation of atDjC53 and atDjC32 specific to heat shock stress or to developmental organ in the transgenic lines. RNAi and overexpression construct was employed to generate atDjC53 and atDjC32 knock-out plants for the study of their function. Molecular function of atDjC53 and atDjC32 is discussed in relation to heat shock and also developmental stages in Arabidopsis.