This study is to stabilize insoluble and unstable active ingredient which is Idebenone (INCI name: hydroxydecyl ubiquinone) in a multi-lamellar vesicle (MLV) and to stabilize it in the skin care cosmetics. Idebenone is good effective raw material in the treatment of Alzheimer's disease in the medical field and a powerful antioxidant in dermatology. It is well known as a substance that inhibits the formation of melanin and cleans the skin pigment. However, it did not dissolve in any solvent and it was difficult to apply in cosmetic applications. Niosome vesicle was able to develop a nano-particle by making a multi-layer of idebenone encapsulated with a nonionic surfactant, hydrogenated lecithin and glycine soja (soybean) sterols and passing it through a high pressure microfluidizer. Idebenone niosome vesicle (INV) has been developed to have the ability to dissolve transparently in water and to promote transdermal penetration. The appearance of the INV was a yellowish liquid having specific odor, and the particle size distribution of INV was about 10~80 nm. The pH was 5~8 (mean=6.8). This capsulation with idebenone was stored in a 45°C incubator for 3 months and its stability was observed and quantitatively measured by HPLC. As a result, the stability of the sample encapsulated in the niosome vesicle (97.5%) was about 66.3% higher than that of the non-capsule sample of 32.5%. Idebenone 1% INV was used for the efficacy test and clinical trial evaluation as follows. The anti-oxidative activity of INV was 38.2%, which was superior to that of 12.8% tocopherol (control). The melanin-reducing effect of B16 melanoma cells was better than INV (17.4%) and Albutin (control) (9.6%). Pro-collagen synthesis rate was 128.2% for INV and 89.3% for tocopherol (control). The skin moisturizing effect was 15.5% better than the placebo sample. The elasticity effect was 9.7% better than the placebo sample. As an application field, INV containing 1% of idebenone is expected to be able to develop various functional cosmetic formulations such as skin toner, ampoule essence, cream, eye cream and sunblock cream. In addition, it is expected that this encapsulated material will be widely applicable to emulsifying agents for skin use in the pharmaceutical industry as well as the cosmetics industry.
오래전부터, 많은 여성들은 자신들의 젊음을 연장하고, 외모를 더 아름답게 가꾸고, 이를 죽을 때까지 유지하는 것을 바래왔다. 이에 의사와 약사들뿐만 아니라, 많은 화장품 연구자들도 노화와 관련된 기술개발에 총력을 기울여 왔다. 따라서, 이들 연구자들은 노화방지를 위한 새로운 원료를 찾고, 이를 안정화하고, 피부로 전달하는 기술개발에 항상 관심을 쏟아왔다. 뛰어난 노화방지 화장품 개발을 위해서, Ubiquinone의 일종인 ldebenone에 대해 연구하였고, 이를 비수계 피부유사막 기술을 가지고 캡슐화하고 약물전달하는 연구를 진행하였다. 먼저, 편광현미경(PM, Polarized Microscope), X-선 회절분석(XRD, X-ray Diffractions) 및 시차주사열량계 (DSC, Differential Scanning Calorimetry)를 이용하여 Idebenone을 담지한 피부유사막 액정을 비수계 조건에서 구조 및 열적특성을 조사하였다. 그 결과 비수계 조건에서도 규칙적으로 패킹(Packing)된 지질이중층(Lipid bilayer)과 용매의 연속층으로 이루어진 고밀집된 라멜라(Lamella) 구조의 형성유무와 이때의 상거동을 확인할 수 있었다. 결론적으로 높은 극성도로인해 물분자와 접촉하면 불안정해지는 경향이 있는 Idebenone을 비수계 조건에서 각질층(SC, Stratum Corneum)과 구조 및 조성이 유사한 피부유사막을 디자인하여 안정하게 캡슐화 하였다. 이를 적용한 화장품은 모든 보관조건에서 유화입자의 안정성을 유지함을 확인하였고, Idebenone의 활성역가 또한 40℃에서 6개월 동안 약 90%이상을 유지하는 우수한 결과를 나타냈다.