검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.06 구독 인증기관 무료, 개인회원 유료
        With the continuous development of science and technology, unmanned ship has gradually become a hot spot in the field of marine research. In practical applications, unmanned ships need to have long-range navigation and high efficiency, so that they can accurately perform tasks in the marine environment. As one of the key technologies of unmanned ship, path planning is of great significance to improve the endurance of unmanned ship. In order to meet the requirements, this paper proposes a path planning method for long distance unmanned ships based on reinforcement learning angle precedence ant colony improvement algorithm. Firstly, canny operator is used to automatically extract navigation environment information, and then MAKLINK graph theory is applied for environment modelling. Finally, the basic ant colony algorithm is improved and applied to the path planning of unmanned ship to generate an optimal path. The experimental results show that, compared with the traditional ant colony algorithm, the path planning method based on the improved ant colony algorithm can achieve a voyage duration of nearly 7 km for unmanned ships under the same sailing environment, which has certain practicability and popularization value.
        4,000원