This paper proposes a possibility of using active front-end rectifier with the SVPWM method for induction motor speed control, which is applicable to small electric propulsion boats. The proposed method can produce a more precise sinusoidal input current waveform and a higher power factor than conventional methods. Its speed, torque, input current, DC voltage, and load current control performance are similar to or better than those of conventional methods. Through computer simulations using the PSIM program, the validity of the proposed method was verified by comparing and analyzing the characteristics of the conventional methods and the proposed method.
The paper presents a digital speed control approach of induction motor systems by using a digital redesign method and adopting a well known 2nd order model as the system model equation. The basic concept using the modeling equation is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc. just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. The effectiveness of the servo control system composed by the above mentioned design concept is illustrated by the experimental results in the presence of step reference change and generator load variation. It is observed from the experimental results that the steady state error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal change and load variation of generator.