Currently many companies are interested in reduction of the carbon emissions associated with their supply chain activities such as transportation and operations. Operational decisions, such as modifications in order quantities could an effective way in reducing carbon emissions in the supply chain. Cap-and-trade regulation, sometimes called emissions trading, is a market-based tool to limit greenhouse gas emissions. Under cap-and-trade regulation, emission credits are allocated to the firms and the firms trades emissions under cap-and-trade schemes. In this paper, we propose a single-manufacturer single-buyer two-echelon supply chain problem under the cap-and-trade mechanism incorporating the carbon emissions caused by transportation and warehousing activities where a single manufacturer produces a family of items in order to deliver a family of items to a single buyer at a fixed interval of time for effective implementation of Just-In-Time (JIT) Purchasing. An integrated multi-product lot-splitting model of facilitating multiple shipments in small lots between buyer and manufacturer is developed in a JIT Purchasing environment. Also, an iterative heuristic algorithm is developed to derive the common order interval, the number of intervals for each product and the number of shipments between the buyer and the manufacturer during the common interval. A numerical example is given to illustrate the savings in reduction of total cost and carbon emissions by the inventory model incorporating cap-and-trade mechanism compared to the classical inventory model. The proposed inventory model could be useful for the practical solution of two-echelon supply chain inventory problem under cap-and-trade mechanism.
In order to remove the inefficient cost occurred among companies, the cooperation among companies are required. The single vendor-single buyer integrated model is often studied for that purpose. Buyer’s demand follows normal distribution, and vendor’s inventory policy use a continuous inventory review policy. If buyer places order, then vendor begins to make products and transfer those products to the buyer several times. In real situation, the size of company’s warehouse is restricted, space limit constraint is considered. There are three approaches for the single vendor-single buyer integrated model with space limit: equal batch shipment approach, increasing batch shipment approach, and mixed approach. In this paper, these approaches are compared one another and we discuss about the advantages and disadvantages of these approaches.
This paper considers one vendor-one buyer integrated-production inventory problem. If the buyer orders products, then the vendor will start to make products and then the products will be shipped from the vendor to the buyer many times. The buyer is supposed to order again when the buyer’s inventory level hits reorder point during the last shipment and this cycle keeps repeated. Buyer uses continuous review inventory policy and customer’s demand is assumed to be probabilistic. The contribution of this paper is to develop a new approach for one-vendor-one-buyer integrated production-inventory problem.
This paper is to analyze an integrated production and inventory model in a single-vendor multi-buyer supply chain. The vendor is defined as the manufacturer and the buyers as the retailers. The product that the manufacturer produces is supplied to the retailers with constant periodic time interval. The production rate of the manufacturer is constant for the time. The demand of the retailers is constant for the time. The cycle time of the vendor is defined as the elapsed time from the start of the production to the start of the next production, while the cycle times of the buyer as the elapsed time between the adjacent supply times from the vendor to the buyer. The cycle times of the vendor and the buyers that minimizes the total cost in a supply chain are analyzed. The cost factors are the production setup cost and the inventory holding cost of the manufacturer, the ordering cost and the inventory holding cost of the retailers. The cycle time of the vendor is investigated through the cycle time that satisfies economic production quantity with the production setup cost and the inventory holding cost of the manufacturer. An integrated production and inventory model is formulated, and an algorithm is developed. An numerical example is presented to explain the algorithm. The solution of the algorithm for the numerical examples is compared with that of genetic algorithm. Numerical example shows that the vendor and the buyers can save cost by integrated decision making.
In this paper, we investigate an inventory and production system in a three-layer supply chain system involving a single supplier, single manufacturer and multiple retailers. Earlier study in this type of supply chain only consider a single raw material in order to produce single item, but we consider raw materials in order to produce multiple items. It is assumed that the cycle time at each stage is an integer multiple of the adjacent downstream stage. We develop an iterative solution procedure to find the order quantity for the multiple items and raw materials that minimizes the supply chain-wide total cost per unit time of the supplier and manufacturer’s raw materials ordering and holding, setup and finished items holding, the retailer’s ordering and inventory holding. Numerical examples are presented to show that the proposed heuristic gives good performance.
In this paper, we consider a single-manufacturer single-buyer supply chain problem where a single manufacturer purchases and processes raw materials into a family of items in order to deliver a family of items to a single buyer at a fixed interval of time for effective implementation of Just-In-Time Purchasing. An integrated multi-item lot-splitting model of facilitating multiple shipments in small lots between buyer and manufacturer is developed in a JIT Purchasing environment. Previous research on the integrated model assumed that the manufacturer orders raw materials m (integer) times for every production run (lot multiplier policy for the raw material). In this paper, we consider a generalized policy in the replenishment of raw materials, allowing lot multiplier policy and lot splitting policy. An iterative solution procedure is developed to find the order interval for finished goods and raw materials, and number of shipments between buyer and manufacturer. We show by numerical example that when the integrated policy is adopted by both buyer and manufacturer in a cooperative manner, both parties can benefit.
In this paper, we consider a single-vendor single-buyer supply chain problem where a single vendor order raw materials from its supplier, then using its manufacturing processes converts the raw materials to finished goods in order to deliver finished good
In this paper, we consider an inventory system where a single supplier purchases and processes raw materials into finished goods in order to deliver finished goods to a single buyer for effective implementation of Just-In-Time Purchasing. An integrated
In this paper, we consider an integrated inventory system where a single supplier purchases and processes raw materials in order to deliver finished goods to a single buyer for effective implementation of Just-In-Time purchasing. An integrated JIT lot-spl
This paper address the Integrated inventory system for JIT purchasing where a single vendor purchases and processes raw-materials in order to deliver finished-items to buyer. A mathematical model and an iteration solution procedure is developed to find the order interval for each item and number of shipment between buyer and supplier simultaneously.