검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated luring distributions by water layer of common squid which were targeted by angling fishing vessels equipped with LED and metal-halide lamps using a scientific echosounder with a 120 kHz frequency in order to develop energy-effective underwater fish aggregation devices. In the analysis, angles of a transducer were changed from 0° to 45° and were rotated every 10° horizontally. It was shown that common squid were densely distributed from the surface to 40 m and they were also distributed in directions of 10°∼+30°, -30°∼-60°, and -120°∼-130°with the head of vessel as the center. Comparative results of angles of transducer on acoustical densities of common squid distributing in 21~40 m water depth showed an average 101.8 m2/nm2 in vertical direction of 0°, 12.3 m2/nm2 in angle of 30°, and 42.4 m2/nm2 in angle of 45°, respectively. It implied that more considerations on acoustic scattering strength by incidence angle direction of the transducer and swimming oriental angle direction of common squid would be required.
        4,000원
        2.
        2009.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The fishing lamp is a fishing gear that gathers fish at night. But the cost of oil, which is used to light fishing lamp, has been risen significantly up to 30-40% of total fishing costs. Therefore it is very urgent to develop an energy economical fishing lamp in order to solve the business difficulties of fisheries. Under this background, this research aims at developing a fishing lamp for squid jigging and hairtail angling fishery using the LED, which has excellent energy efficiency and durability. The LED fishing lamp developed can be controlled to fix a fit direction of fish shoal deep because a fishing lamp can be adjustable up and down directions. One unit of fishing lamp has about an 80Watt capacity and the frame of fishing lamp is made of aluminium to emit generated heat of LED to outside. The LED lamp developed was highly durable, only 5.7% of emitting efficiency decreased for 18 months. The illuminance of a unit LED lamp was 2,070lux at 1m and 21lux at 10 m distance, and the intensity of LED lamp system emitted 2,580lux and 400lux at the respective distances. After development of this fishing lamp, 100 units are installed on operating fishing vessels. Experimental results show that energy consumption of squid jigging and hairtail angling was reduced by 40% and 87%, respectively. In conclusion, our methods showed elevated fishing power, compared with traditional fishing method: 37.7% for squid jigging and 24.5% for hairtail angling.
        4,200원