검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzes the discourse of Korean internet users regarding patient clothing and identifies the changes to structure and content of clothing resulting from infectious disease outbreaks. The analysis draws on texts from Korean blogs, internet cafes, and news articles from 2011 to 2021 related to patient clothing. Using Ucinet 5 and NodeXL 1.0.1 programs, network density, centrality, and cluster analyses were conducted using the Wakita–Tsurumi algorithm. Additionally, Latent Dirichlet Allocation (LDA) topic modeling was applied using Python 3.7 to further explore thematic patterns within the discourse. Throughout the period of study, it was found that users consistently discussed the specific purpose and functionality of patient clothing. Following the outbreak of COVID-19, the distribution and influence of keywords related to the functional aspects of patient clothing, such as “hygiene and safety,” significantly increased. An increased focus was placed on elements such as functionality, activity, autonomy, hygiene, and safety during the pandemic as public health concerns grew. It can be seen that patients increasingly share their experiences online and hospitalization rates surge during health crises; this study provides valuable insights into how the design of patient clothing can be improved through various informatics techniques. It underscores the evolving perception of patient clothing as essential medical equipment during health emergencies. In addition, it offers practical guidance for enhancing designs that better reflect shifting societal concerns, particularly regarding health, safety, and patient comfort.
        5,100원
        2.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        풍공학분야에 특화된 학술지인 한국풍공학회지에서 발간된 논문에 대해 토픽모델링 기법 중 잠재의미분석(LSA)와 잠재디리 크레할당(LDA)을 적용하여 연구주제 추출의 적합성을 비교 평가하였다. 토픽간의 유사도를 평가하기 위해 문서토픽행렬을 이용한 상 관분석법을 제안하였으며, 이를 적용하여 문서단어행렬의 특성벡터로부터 토픽을 추출하는 LSA 대비 단어의 결합확률을 이용하는 LDA가 토픽 구성단어를 2배 이상 사용하여 보다 독립적인 토픽을 추출하였다는 평가결과를 얻었다. 학술지의 연구주제를 종합하면 ‘building’, ‘bridge’를 ‘연구대상’으로 ‘wind speed’, ‘wind load’, ‘vibration control’을 ‘연구목적’으로 ‘wind tunnel test’, ‘numerical method’의 ‘연구방법’을 사용하였다. 향후 토픽모델링은 연구주제를 ‘연구대상’, ‘연구목적’, ‘연구방법’의 구조적인 결합으로 정의하여 단어의 사용특성을 반영하는 방식으로 개선되어야 할 것으로 사료된다.
        4,000원