In regions of low-to-moderate seismicity, various types of lap splices are used for longitudinal reinforcement of columns at the plastic hinge zones. The seismic performance of such lap spliced columns, such as strength, deformation capacity, and energy dissipation, is affected by material strengths, longitudinal re-bar size, confinement of hoops, lap splice location, and lap splice length. In the present study, cyclic loading tests were performed for columns using three types of lap splices (bottom offset bar splice, top offset bar splice, and splice without offset bend). Lap splice length(40db and 50db) was also considered as test parameters. Ties with 90-degree end hooks were provided in the lap splice length. The test results showed that strength, deformation capacity, and energy dissipation of columns significantly differed depending on the details and the length of lap splices. The bottom offset bar splice showed high ductility and energy dissipation but low strength; on the other hand, the top offset bar splice and the splice without offset bend showed high strength but moderate ductility and energy dissipation.
KCI 2012 and ACI318-11 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. In ACI318-11, the confinement factor, such as transverse reinforcement factor, is not used to calculate the development length of headed bars. The purpose of this experimental study is to evaluate the effect of confinement details to the lap splice performance of headed deformed reinforcing bars in grade SD400 and SD500. The confinement details are stirrups and tie-down bars in lap zone. Test results showed that specimens with only stirrups had the brittle failure and could not increase lap strengths, and that specimens with composite confinements by stirrups and tie-down bars had the flexural strengths over than nominal flexural strengths. Stirrups with tie-down bars can have an effect on improvement in lap splice of headed bars in grade SD400 and SD500.
The purpose of this experimental study is to evaluate that KCI2012 equation for the development length, ldt, of headed bars can be used to calculate the lap length of headed deformed bars in grade SD400~500 for high strength concrete. Test results showed that specimens with lap lengths equal to 1.3ldt had maximum flexural strengths as 0.84~0.90 times as the nominal flexural strengths. These observations indicate that 1.3 is unsuitable to the tensile lap length of headed deformed bars in grade SD400~500 for high strength concrete.