본 논문에서는 소성 설계를 기반으로 한 프레임 구조 설계 시, 기둥의 종류에 따른 구조 제작 비용과 거동의 차이를 연구하였다. 축 력과 횡력을 모두 받는 구조물에 적합한 기둥 부재를 선택하는 것이 중요하며, 플라스틱 설계 방법을 채택할 경우 기둥의 역할이 더욱 강조된다다. 특히, 횡력은 기둥의 연성을 요구하며, CFT(콘크리트 충전 강관)형 기둥은 RC(철근 콘크리트) 기둥보다 높은 강철 비율 로 연성을 확보하게 된다. 이 논문에서는 CFT 기둥이 RC 기둥보다 더 나은 성능을 보이는지 확인하기 위해 다양한 구조 유형에서 기 둥을 설계하고 분석하였다. CFT 기둥을 소성 설계에 채택함으로써 얻을 수 있는 이점은 다양한 구조 유형에 따른 하중 유형의 분석을 통해 제시한다.
In order to keep the safety of maneuverability under the lateral berthing, it is necessary to estimate the magnitudes and properties of the hydrodynamic forces acting on ship hull quantitatively. In this paper, CFD technique is used to calculate the steady lateral force according to the water depth for Wigley model under the unsteady lateral berthing. The numerical results are analysed into the steady lateral force and the transitional lateral force, and some of reviews for the safety of maneuverability relating to the lateral berthing are discussed based on the computed hydrodynamic forces.
An accurate method of estimating ship maneuverability needs to be developed to evaluate precisely and improve the maneuverability of ships according to the water depth. In order to estimate maneuverability by a mathematical model. The hydrodynamic forces acting on a ship hull and the flow field around the ship in maneuvering motion need to be estimated. The ship speed new the berth is very low and the fluid flow around a ship hull is unsteady. So, the transient fluid motion should be considered to estimate the drag force acting on the ship hull. In the low speed and short time lateral motion, the vorticity is created by the body and grow up in the acceleration stage and the velocity induced by the vorticity affect to the body in deceleration stage. For this kind of problem, CFD is considered as a goof tool to understand the phenomena. In this paper, the 2D CFD code is used for basic consideration of the phenomena to solve the flow in the cross section of the ship considering the ship is slender and the water depth is large enough. The flow fields Added and hydrodynamic forces for the some prescribed motions are computed and compared with the preliminary experiment results. The comparison of the force with measurement is shown a fairly good agreement in tendency. The 3D Potential Calculation based on the Hess & Smith Theory is employed to predict the surge, sway added mass and yaw added moment of inertia of hydrodynamic coefficients for M/V ESSO OSAKA according to the water depth. The results are also compared with experimental data. Finally, the sway added mass of hydrodynamic coefficients for T/S HANNARA is suggested in each water depth.