Background: Leydig cells, crucial for testosterone production, express ion channels like ANO1 that influence hormone secretion. This study investigates the expression and role of the Tandem of P domains in a weak inward rectifying K+ channel-related Acid-Sensitive K+-1 (TASK-1) channel in these cells, exploring its impact on testicular function and steroidogenesis. Methods: TASK-1 expression in Leydig cells was confirmed using immunostaining, while RT-PCR and Western Blot (WB) validated its expression in the TM3 Leydig cell line. The effect of a TASK-1 channel blocker on cell viability was assessed through live/dead staining and MTT assays. Additionally, the blocker’s effect on testosterone secretion was evaluated by measuring testosterone levels. Results: Immunohistochemical analysis revealed a predominant presence of TASK- 1, along with c-Kit and ANO-1, in Leydig cells adjacent to seminiferous tubules and also in Sertoli and spermatogenic cells. Expression levels of TASK-1 mRNA and protein were significantly higher in TM3 Leydig cells compared to TM4 Sertoli cells. In addition, blocking TASK-1 in TM3 cells with ML365 induced cell death but did not affect LHinduced testosterone secretion. Conclusions: These findings suggest that TASK-1 in Leydig cells is crucial for their viability and proliferation, highlighting its potential importance in testicular physiology.
Receptor tyrosine kinase c-Kit, a marker found on interstitial cells of Cajal (ICCs), is expressed in Leydig cells, which are testicular interstitial cells. The expression of other ICC markers has not yet been reported. In this study, we investigated the expression of c-Kit and anoctamin 1 (ANO1), another ICC marker, in mouse testes. In addition, the relationship between c-Kit and ANO1 expression and Leydig cell function was investigated. We observed that c-Kit and ANO1 were predominantly expressed in mouse Leydig cells. The mRNA and protein of c-Kit and ANO1 were expressed in TM3, a mouse Leydig cell line. LH induced an increase in intracellular Ca2+ concentration, membrane depolarization, and testosterone secretion, whereas these signals were inhibited in the presence of c-Kit and ANO1 inhibitors. These results show that c-Kit and ANO1 are expressed in Leydig cells and are involved in testosterone secretion. Our findings suggest that Leydig cells may act as ICCs in testosterone secretion.
The role of transient receptor potential vanilloid receptor-1 (TRPV1) has been primarily investigated in pain sensory neurons. Relatively, little research has been performed in testicular cells. TRPV1 is abundantly expressed in Leydig cells of young adult mice. This study was conducted to determine the role of the TRPV1 channel in Leydig cells. TRPV1 modulators and testosterone were treated to the mouse Leydig cell line TM3 cells for 24 h. Capsaicin, a TRPV1 activator, dose-dependently induced cell death, whereas capsazepine, a TRPV1 inhibitor, inhibited capsaicin-induced cell death. Testosterone treatment reduced capsaicin-induced cell death. High concentrations of testosterone decreased TRPV1 mRNA and protein expression levels. However, TRPV1 modulators did not affect testosterone production. These results showed that capsaicin induced cell death of Leydig cells and that testosterone reduced capsaicininduced cell death. Our findings suggest that testosterone may regulate the survival of Leydig cells in young adult mice by decreasing the expression level of TRPV1.
The ultrastructures of germ cells and the functions of Leydig cells and Sertoli cells during spermatogenesis in male Kareius bicoloratus (Pleuronectidae) were investigated by electron microscope observation. Each of the well-developed Leydig cells during active maturation division and before spermiation contained an ovoid vesicular nucleus, a number of smooth endoplasmic reticula, well-developed tubular or vesicular mitochondrial cristae, and several lipid droplets in the cytoplasm. It is assumed that Leydig cells are typical steroidogenic cells showing cytological characteristics associated with male steroidogenesis. No cyclic structural changes in the Leydig cells were observed through the year. However, although no clear evidence of steroidogenesis or of any transfer of nutrients from the Sertoli cells to spermatogenic cells was observed, cyclic structural changes in the Sertoli cells were observed over the year. During the period of undischarged germ cell degeneration after spermiation, the Sertoli cells evidenced a lysosomal system associated with phagocytic function in the seminiferous lobules. In this study, the Sertoli cells function in phagocytosis and the resorption of products originating from degenerating spermatids and spermatozoa after spermiation. The spermatozoon lacks an acrosome, as have been shown in all teleost fish spermatozoa. The flagellum or sperm tail of this species evidences the typical 9+2 array of microtubules.
Polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous in the air, are present as volatile and particulate pollutants that result from incomplete combustion. Most PAHs have toxic, mutagenic, and/or carcinogenic properties. Among PAHs, benzo[a]pyrene (B[a]P) and dimethylbenz[a]anthracene (DMBA) are suspected endocrine disruptors. The testis is an important target for PAHs, yet effects on steroidogenesis in Leydig cells are yet to be ascertained. Particularly, disruption of testosterone production by these chemicals can result in serious defects in male reproduction. Exposure to B[a]P reduced serum and intratesticular fluid testosterone levels in rats. Of note, the testosterone level reductions were accompanied by decreased steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase isomerase (3b-HSD) expression in Leydig cells. B[a]P exposure can decrease epididymal sperm quality, possibly by disturbing the testosterone level. StAR may be a key steroidogenic protein that is targeted by B[a]P or other PAHs. Key words : Polycyclic aromatic hydrocarbons, Endocrine disruptor, Steroidogenesis, Leydig cells
Estrogen is an important regulator of reproduction in both male and female. The two forms of estrogen receptor (ER) are known, ERα and ERβ. To understand the role of ERα in the testis, we investigated the expression of ERα in the mouse Leydig cells during postnatal development and the effects of estrogen on steroidogenesis and proliferation in progenitor Leydig cells (PLCs). In the testis, ERα mRNA and protein levels were markedly increased from postnatal day (PND) 1 to 14 and decreased thereafter until PND 56. During postnatal development ERα immunoreactivity was strong in the nucleus of Leydig cells at PND 14 when PLCs were abundant in the interstitium and low in the mature adult Leydig cells (ALCs). In fetal Leydig cells (FLCs), ERα immunoreactivity was negligible at birth and became increased at PND 14. This suggests an important role of ERα in Leydig cells during neonatal period. In isolated PLCs, 17β-estradiol (E2) and ERα-selective agonist, PPT suppressed the hCG-induced progesterone production and steroidogenic pathway genes expression. The hCG-induced PLCs proliferation was significantly inhibited by E2 and PPT. In conclusion, estrogen - ERα signaling may negatively regulate functional differentiation and proliferation of PLCs.
Water channel proteins, aquaporins (AQPs) contribute to transepithelial water movement in many tissues. To date, 13 mammalian AQPs have been identified. Of these, AQP5 plays an important role in the fluid homeostasis and cell volume control in epithelial cells. In an effort to understand the role of AQP5 in testis, we investigated the expression of AQP5 in developing mouse testis, its regulation by estrogen and LH, and the change of steroidogenesis by AQP5 knockdown. Testes and Leydig cells were isolated from male mice at postnatal day (PND) 1, 7, 14, 28, and 56 and estrogen receptor alpha knockout (ERαKO) mice. In mouse testis, AQP5 immunoreactivity was negligible by PND 14. From PND 28 onward, AQP5 immunoreactivity was found in Leydig cells. In ERαKO mouse Leydig cells, AQP5 mRNA level was significantly lower than wild type. In primary adult Leydig cell culture, the expression of AQP5 mRNA was increased by 17β-estradiol (E2) and human chorionic gonadotropin (hCG), but was not changed in ERαKO Leydig cells. Moreover, the expression of AQP5 mRNA was increased by E2 and ERα-selective agonist PPT, but was not changed by ERβ-selective agonist DPN in primary Leydig cells and mLTC-1. In silico analysis and chromatin immunoprecipitation (ChIP) assay revealed that there are putative estrogen response elements (EREs) and cAMP response elements (CRE) in AQP5 promoter region. Testosterone secretion and steroidogenic pathway genes (StAR, Cyp11a1, Cyp17a1, and 3β-HSD6) expression were decreased by AQP5 siRNA in primary Leydig cells. In conclusion, AQP5 expression was coupled with functional differentiation of adult Leydig cells. AQP5 may play an important role in the fluid homeostasis and cell volume control during development of adult Leydig cells. The expression of AQP5 in Leydig cells could be regulated by ERα and LH signaling and AQP5 may be involved in steroidogenesis.
The Egr family of zinc finger transcription factors is rapidly induced by various mitogens and regulates cell growth, differentiation, and apoptosis. While it is clear that loss of Egr1 leads to anovulatory infertility due to LHβ deficiency in female mice, molecular function of Egr1 in male reproduction has not been clearly investigated. Here, we demonstrate that Egr1 acts as an intrinsic transcription factor in Leydig cells to regulate their proliferation and steroidogenesis in the testis as well as an extrinsic factor for male reproduction via LHβ transcription in the pituitary. Egr1 is predominantly expressed in spermatogonia and Leydig cells in immature testes and later detected in some of these cell types in mature testes. The fertility potential of Egr1(-/-) male mice is relatively deteriorated even at 2 month-old age and aggravated with aging. The incidence of abnormalities of seminiferous tubules such as Sertoli cell only was dramatically increased with aging. The number and mean size of Leydig cells were significantly reduced in Egr1(-/-) testes. The impairment of Leydig cells is consistent with significant reduction in levels of testosterone and expression of factors critical for steroidogenesis such as StAR in Egr1(-/-) testes. Exogenous administration of hCG rapidly and transiently induced Egr1 expression in Leydig cells culture in vitro. hCG could reinstate reduced mean size of Leydig cells but not reduced number of Leydig cells and aberrantly low StAR expression, suggesting that Egr1 has critical functions for Leydig cell proliferation and their steroidgenesis. In addition, daily sperm production and in vitro fertilization (IVF) competence were significantly reduced, and apoptosis was facilitated in these mice. Furthermore, hCG administration to compensate for relatively low LH levels in Egr1(-/-) males could not restore the compromised reproductive phenotypes such as IVF competence and apoptosis in these mice. Interestingly, expression of Egr2, a member of Egr family, is significantly elevated in Egr1(-/-) Leydig cells suggesting that genetic compensation of Egr2 may alleviate phenotypic aberration of Egr1(-/-) male testes. Collectively, these results suggest that Egr1 act as an intrinsic transcription factor required for proliferation and steroidogenesis of Leydig cells to govern spermatogenesis in the testis.