The Probabilistic Traveling Salesman Problem (PTSP) is an important topic in the study of traveling salesman problem and stochastic routing problem. The goal of PTSP is to find a priori tour visiting all customers with a minimum expected length, which sim
The Probabilistic Traveling Salesman Problem (PTSP) is an important topic in the study of traveling salesman problem and stochastic routing problem. The goal of PTSP is to find a priori tour visiting all customers with a minimum expected length, which simply skips customers not requiring a visit in the tour. There are many existing researches for the homogeneous version of the problem, where all customers have an identical visiting probability. Otherwise, the researches for the heterogeneous version of the problem are insufficient and most of them have focused on search base algorithms. In this paper, we propose a simple construction algorithm to solve the heterogeneous PTSP. The Minimum Expected Length Insertion (MELI) algorithm is a construction algorithm and consists of processes to decide a sequence of visiting customers by inserting the one, with the minimum expected length between two customers already in the sequence. Compared with optimal solutions, the MELI algorithm generates better solutions when the average probability is low and the customers have different visiting probabilities. We also suggest a local search method which improves the initial solution generated by the MELI algorithm.
본 논문은 시간 제약을 갖는 차량 라우팅 문제를 해결하기 위해 유전자 알고리듬과 부분 최적화 알고리듬을 적용한 방법을 소개한다. 유전자 알고리듬에서의 염색체는 노드를 나타내는 정수의 순열로 표현되어 직접적인 해를 나타내지 않지만, 경험적 방법에 의한 해석을 통해 유효한 해로 변형되도록 하였다. 유전자 알고리듬에 의해 생성된 주어진 수의 우수한 해들에는 세 부분 최적화 방법이 순차적으로 적용되어 보다 좋은 해를 생성하도록 하였다. 부분 최적화 방법들에