PURPOSES : The purpose of this study is to estimate the reduction in traffic noise in a double-layered specific porous pavement at roadsides based on variations in traffic volume and driving speed.
METHODS : A statistical pass-by (SPB) method was employed in this study to measure noise. Variations in the following parameters were measured: running speed, heavy traffic percentage, and traffic volume.
RESULTS : Quantitative analysis revealed that the double-layered porous pavement reduced noise levels by 9.16 dB(A) at a 95% confidence level at the sides of roads.
CONCLUSIONS : As a countermeasure of traffic noise, porous pavement has been recommended. This research quantitatively proved that double-layered porous pavement can reduce traffic noise by more than 9.0 dB(A) at roadsides
PURPOSES : The purpose of this study is to estimate the reduction of traffic noise in a double-layered specific porous pavement based on the traffic speed variation.
METHODS : The close-proximity method was used in noise measurement, and the running speed was measured at 10 km/h and from 50 to 80 km/h.
RESULTS : From the quantitative analysis, it was found that the double-layered porous pavement reduced by 9.4 dB (A) on the average and 9.16 dB (A) at a 95% confidence level.
CONCLUSIONS : The use of porous pavements have been recommended to minimize traffic noise. In this study, it is quantitatively demonstrated that the double-layered porous pavement can reduce the traffic noise by more than 9.0 dB(A).