검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mill scale, an iron waste, was used to separate magnetite particles for the adsorption of phosphate from aqueous solution. Mill scale has a layered structure composed of wustite (FeO), magnetite (Fe3O4), and hematite (Fe2O3). Because magnetite shows the highest magnetic property among these iron oxides, it can be easily separated from the crushed mill scale particles. Several techniques were employed to characterize the separated particles. Mill scale-derived magnetite particles exhibited a strong uptake affinity to phosphate in a wide pH range of 3-7, with the maximum adsorptive removal of 100%, at the dosage of 1 g/L, pH 3-5. Langmuir isotherm model well described the equilibrium data, exhibiting maximum adsorption capacities for phosphate up to 4.95 and 8.79 mg/g at 298 and 308 K, respectively. From continuous operation of the packed-bed column reactor operated with different EBCT (empty bed contact time) and adsorbent particle size, the breakthrough of phosphate started after 8-22 days of operation. After regeneration of the column reactor with 0.1N NaOH solution, 95-98% of adsorbed phosphate could be detached from the column reactor.
        4,000원
        2.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetite particles were synthesized by co-precipitation of water-soluble 밀 스케일-derived precursor by various concentrations of (0.5, 0.67, 1, 2 N) NaOH and (0.6, 0.8, 1.2, 2.4 N) NH4OH. It is theoretically known that as the concentration of the alkaline additive used in iron oxide synthesis increases, the particle size distribution of that iron oxide decreases. This trend was observed in both kind of alkaline additive used, NaOH and NH4OH. In addition, the magnetite synthesized in NaOH showed a relatively smaller particle size distribution than magnetite synthesized in NH4OH. Crystalline phase of the synthesized magnetite were determined by X-ray diffraction spectroscopy(XRD). The particles were then used as an adsorbent for phosphate(P) removal. Phosphorus adsorption was found to be more efficient in NaOH-based synthesized magnetite than the NH4OH-based magnetite.
        4,000원
        3.
        2022.02 KCI 등재 서비스 종료(열람 제한)
        In this study, the inhibition of ammonia on anaerobic digestion of butyric acid was evaluated and the potential alleviating effects of such ammonia inhibition by the addition of magnetite particles were investigated. Independent anaerobic batch tests fed with butyric acid as a sole organic source were conducted in twenty 60-mL glass bottles with 10 different treatment conditions, comprising ammonia: 0.5, 2.0, 4.0, 6.0, and 7.0 g total ammonia nitrogen (TAN)/L and magnetite particles: 0 mM and 20 mM. The increase in ammonia concentration did not cause significant inhibition on methane yield; however, a significant inhibition on lag time and specific methane production rate was observed. The IC50 in the control treatments (without magnetite addition) was estimated as 6.2654 g TAN/L. A similar inhibition trend was observed in magnetite-added treatments; however, the inhibition effect by ammonia was significantly alleviated in lag time and specific methane production rate when compared to those in the control treatments. The lag time was shortened by 1.6–46.3%, specific methane production rate was improved by 6.0–69.0%. In the magnetite-added treatments, IC50 was estimated as 8.5361 g TAN/L. This study successfully demonstrated the potential of magnetite particles as an enhancer in anaerobic digestion of butyric acid under conditions of ammonia stress.