Background: Individuals with mechanical neck pain show biomechanical and neurophysiological changes, including cervical spine muscle weakness. As a result of deep muscle weakness, it causes stability disability and reduced upper thoracic spine mobility, which finally leads to functional movement restriction such as limited range of motion and dysfunction. Recent studies have shown that thoracic spine manipulation and mobilization could reduce symptoms of mechanical neck pain in patients.
Objects: The purpose of this study was to investigate the effects of thoracic mobility exercise on cervicothoracic function, posture feature, and pain intensity in individuals with mechanical neck pain.
Methods: The study subjects were 26 persons who were randomly assigned to the experimental (with thoracic mobility exercise) and control groups (without thoracic mobility exercise), with 13 subjects in each group. The cervicothoracic function (neck functional disability level and cervicothoracic range of motion), posture feature, and pain rating (using a quadrupled visual analogue scale [QVAS]) were measured before, after 3 weeks, and after 6 weeks.
Results: Statistically significant group-by-time interactions were found with repeated analyses of variance for the Korean neck disability index (KNDI), all cervical range of motion (CROM), all thoracic range of motion (TROM), cranial rotation angle, sagittal shoulder posture (SSP), and QVAS (p<.05). All groups showed significant improvements from all times in all the evaluated methods. The KNDI, CROM, TROM of left rotation, and SSP in the experimental group showed significant improvements after 3 weeks, and the TROM of the right rotation and QVAS in the experimental group showed significant improvements after 6 weeks when compared with the control group.
Conclusion: Thoracic mobility exercise during 6 weeks might be effective intervention to improve the functional level, posture feature, and QVAS pain rating for managing individuals with mechanical neck pain.
The purpose of this study was to apply the joint mobilization technique to the level of segments with pain and to the level of segments with hypomobility respectively and compare the immediate effects of the joint mobilization technique on the pain, the active cervical range of motion (ROM), and treatment satisfaction of patients with acute mechanical neck pain. After the baseline assessment, forty-two patients were randomized into two groups: a painful group (n1=21) that received joint mobilization at the most painful cervical spine level and a hypomobile group (n2=21) that received joint mobilization at the most hypomobile cervical level. The patients received an intervention that applied unilateral posterior-anterior gliding for 5 minutes and two repetitions of 10 times of active extension motion with distraction. In the Wilcoxon signed-rank test, the painful group and the hypomobile group were improved significantly in all pain variables (p<.001), while the painful group was improved significantly in the active cervical flexion (p<.001), extension (p<.001), left side-bending (p<.01), right side-bending (p=.001), left rotation (p<.001), and right rotation (p<.001). The hypomobile group was significantly improved in active cervical flexion (p=.001), extension (p<.001), left side-bending (p<.05), right side-bending (p=.001), left rotation (p=.001), and right rotation (p<.01) after intervention. In the Mann-Whitney U test, there was no significant difference in any of the dependent variables after the intervention between the two groups, but the painful group was slightly superior to the hypomobile group in all variables except for the right lateral flexion ROM and treatment satisfaction. These outcomes suggest that the cervical joint mobilization may be applied to either the level of painful segments or the hypomobile segments for the treatment of patients with acute mechanical neck pain.