Mesocrystals are macroscopic structures formed by the assembly of nanoparticles that possess distinct surface structures and collective properties when compared to traditional crystalline materials. Various growth mechanisms and their unique features have promise as material design tools for diverse potential applications. This paper presents a straightforward method for metal–organic coordination-based mesocrystals using nickel ions and terephthalic acid. The coordinative compound between Ni2+ and terephthalic acid drives the particle-mediated growth mechanism, resulting in the mesocrystal formation through a mesoscale assembly. Subsequent carbonization converts mesocrystals to multidirectional interconnected graphite nanospheres along the macroscopic framework while preserving the original structure of the Ni-terephthalic acid mesocrystal. Comprehensive investigations demonstrate that multi-oriented edge sites and high crystallinity with larger interlayer spacing facilitate lithium ion transport and continuous intercalation. The resulting graphitic superparticle electrodes show superior rate capability (128.6 mAh g− 1 at 5 A g− 1) and stable cycle stability (0.052% of capacity decay per cycle), certifying it as an advanced anode material for lithium-ion batteries.
Cubic mesocrystal CeO2 was synthesized via a hydrothermal method with glutamic acid (C5H9NO4) as a template. The XRD pattern of a calcined sample shows the face-centered cubic fluorite structure of ceria. Transmission electron microscopy (TEM) and the selected-area electron diffraction (SAED) pattern revealed that the submicron cubic mesocrystals were composed of many small crystals attached to each other with the same orientation. The UV-visible adsorption spectrum exhibited the red-shift phenomenon of mesocrystal CeO2 compared to commercial CeO2 particles; thus, the prepared materials show tremendous potential to degrade organic dyes under visible light illumination . With a concentration of a rhodamine B solution of 20 mg/L and a catalyst amount of 0.1 g/L, the reaction showed higher photocatalytic performance following irradiation with a xenon lamp (≥ 380 nm). The decoloring rate can exceed 100% after 300 min.