In KAERI’s previous phosphate precipitation tests, the dispersed powder of lithium phosphate (Li3PO4) as a precipitation agent reacted with various metal chlorides in a simulated LiCl-KCl molten salt. The reaction of metal chlorides composed of actinides such as uranium and three rare earths (Nd, Ce and La) with lithium phosphate is a solid-liquid reaction. A phosphorylation reaction rate is very fast and the metal phosphates as a reaction product precipitated on the bottom of the molten salt crucible. One of the recovery methods of the metal phosphate precipitates is segregation the lower part (precipitates) of the salt ingot using the various cutting tools. Recently, a new phosphorylation experiment using lithium phosphate ingots carried out in order to collect the metal phosphate precipitates into a small recovering vessel, and the test result of this new method was feasible. However, the reaction rate of test using lithium phosphate ingot is extremely slower than that of test using lithium phosphate powder. In this study, the precipitation reactor design (a tapered crucible with polished inner surface) used for phosphorylation reaction showed that the salt ingot with metal phosphate precipitates could be detached from a tapered stainless steel crucible. We propose that the recovery of precipitates from a salt ingot is possible by introducing a dividing plate structure into a molten salt and by positioning it at the interface between salt and precipitated metal phosphate.
Some of the metal waste generated from KEPCO NF is being disposed of in the form of ingots. An ingot is a metal that is melted once and then poured into a mold to harden, and it is characterized by a uniform distribution of radioactive material. When measuring the uranium radioactivity in metal ingot with HPGe detector, 185.7 keV of U-235 is used typically because most gamma rays emitted at U-235 are distributed in low-energy regions below 200 keV. To analyze radioactivity concentration of U-235 with HPGe detector more accurately, self-attenuation due to geometrical differences between the calibration source and the sample must be corrected. In this study, the MCNP code was used to simulate the HPGe gamma spectroscopy system, and various processes were performed to prove the correlation with the actual values. First an metal ingottype standard source was manufactured for efficiency calibration, and the GEB coefficient was derived using Origin program. And through the comparison of actual measurements and simulations, the thickness of the detector’s dead layers were defined in all directions of Ge crystal. Additionally instead of making an metal ingot-type standard source every time, we analyzed the measurement tendency between commercially available HPGe calibration source (Marinelli beaker type) and the sample (metal ingot type), and derived the correction factor for geometry differences. Lastly the correction factor was taken into consideration when obtaining the uranium radioactivity concentration in the metal ingot with HPGe gamma spectroscopy. In conclusion, the U-235 radioactivity in metal ingot was underestimated about 25% of content due to the self-attenuation. Therefore it is reasonable to reflect this correction factor in the calculation of U-235 radioactivity concentration.