Here, we report the preparation of microporous-activated carbons from a Brazilian natural lignocellulosic agricultural waste, cupuassu shell, by pyrolysis at 500 ºC and KOH activation under different experimental conditions and their subsequent application as adsorbent for CO2 capture. The effect of the KOH:precursor ratio (wt/wt%) and the activation temperature on the porous texture of activated carbons have been studied. The values of specific surface area ranged from 1132 to 2486 m2/ g, and the overall micropore volume ranged from 0.73 to 1.02 cm3/ g. Carbons activated with 2:1 ratio of KOH and activation temperature of 700 ºC presented a CO2 adsorption at 1 bar of 7.8 and 4.4 mmol/g at 0 °C and 25 ºC, respectively. The isosteric heat of adsorption, Qst , was calculated for all samples by applying the Clausius–Clapeyron approach to CO2 adsorption isotherms at both temperatures. The values of CO2 adsorption capacities are among the highest reported in the literature, especially for activated carbons produced from biomass.
This research aims to study the effect of impregnation ratio and activation temperature on microporous development of activated carbon (AC). Rubberwood chips, which are wasted from home furnishing industry, were used as precursors for synthesized of activated carbon by chemical activation employing Potassium hydroxide (KOH) as activation agent. Rubberwood char was carbonized at 400 °C for 1 h under inert gas. In this experiment, the rubberwood chars were impregnated with KOH solution by 1:1–3 (char: KOH) impregnation ratio for 24 h, then the samples were activation at 600–800 °C. Surface area, pore volume, micropore volume, pore size distribution, adsorption isotherm and porous structure were analyzed in this experiment to identify the properties of derived activated carbon. According to the investigation, the activated carbon, activated at 800 °C with impregnation ratio of 1:3, demonstrated the highest surface area, pore volume and micropore volume as 1491.75 m2/g, 0.6777 cm3/g, and 0.5813 cm3/g, respectively. Its average pore size was 1.82 nm and it also showed type I adsorption isotherm which indicates as microporous solid.
Coloured wastewater is released as a direct result of the production of dyes as well as from various other chemical industries. Many dyes and their breakdown products may be toxic for living organisms. Activated carbon is one of the best materials for removal of dyes from aqueous solutions. The present study describes the adsorption behaviour of methylene blue dye on three microporous activated carbons, where two samples (AC-1 and AC-2) were prepared by a polymer blend technique and the other is a microporous activated carbon (ARY-3) sample from viscose rayon yarn prepared by chemical-physical activation. The effects of contact time and activated carbon dosage on decolourisation capacity have been studied. The results show that activated carbon having mixed microporosity and mesoporosity show tremendous decolourisation capacity for methylene blue. In addition, the activated carbon in the powder form prepared by the polymer blend technique shows better decolourisation capacity for methylene blue than the activated rayon yarn sample.