다중 에이전트 강화학습의 발전과 함께 게임 분야에서 강화학습을 레벨 디자인에 적용하려는 연구가 계속되 고 있다. 플랫폼의 형태가 레벨 디자인의 중요한 요소임에도 불구하고 지금까지의 연구들은 플레이어의 스킬 수준이나, 스킬 구성 등 플레이어의 매트릭에 초첨을 맞춰 강화학습을 활용하였다. 따라서 본 논문에서는 레 벨 디자인에 플랫폼의 형태가 사용될 수 있도록 시각 센서의 가시성과 구조물의 복잡성을 고려하여 플랫폼 이 플레이 경험에 미치는 영향을 연구한다. 이를 위해Unity ML-Agents Toolkit과MA-POCA 알고리즘, Self-play 방식을 기반으로2vs2 대전 슈팅 게임 환경을 개발하였으며 다양한 플랫폼의 형태를 구성하였다. 분석을 통해 플랫폼의 형태에 따른 가시성과 복잡성의 차이가 승률 밸런스에는 크게 영향을 미치지 않으나 전체 에피소 드 수, 무승부 비율, Elo의 증가폭에 유의미한 영향을 미치는 것을 확인했다.
Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure’s safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.
Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.