상세한 지진해일 범람 현상을 규명하기 위하여 수립된 전회의 동적결합 차분 모형(Choi et al.)이 1983년 동해중부지진에 의한 지진해일 연구를 위해 우리나라 동해안 전역에 적용되었다. 계산영역은 격자의 크기가 다른 몇 개의 둥지영역이 평행하거나 경사가 진 방향으로 연결되어 구성되어 있다. 제일 안쪽의 둥지 영역은 해안을 따라 순차적으로 16영역으로 구성되었으며, 격자간격은 약 30m이다. 천수방정식(선형과 비선형)이 적용된 수치 시뮬레이션은 둥지영역의 격자크기에 따라 직각 또는 구면좌표계가 채택되었으며, 평행 및 경사 접합이 제일 안쪽의 둥지형 모형에 적용되었다. 시뮬레이션에 의한 결과는 지진해일 사상에 대한 처오름 높이의 관측치와 잘 일치하였다. 지진해일고 분포곡선의 개선이 수치적으로 연구되었으며, 지진원으로부터 거리가 먼 경우에는 대수정규분포를 따르는 경향을 보인다.
Recent studies on automatic parking have actively adopted the technology developed for mobile robots. Among them, the path planning scheme plans a route for a vehicle to reach a target parking position while satisfying the kinematic constraints of the vehicle. However, previous methods require a large amount of computation and/or cannot be easily applied to different environmental conditions. Therefore, there is a need for a path planning scheme that is fast, efficient, and versatile. In this study, we use a multi-dimensional path grid map to solve the above problem. This multi-dimensional path grid map contains a route which has taken a vehicle's kinematic constraints into account; it can be used with the A* algorithm to plan an efficient path. The proposed method was verified using Prescan which is a simulation program based on MATLAB. It is shown that the proposed scheme can successfully be applied to both parallel and vertical parking in an efficient manner.
The goal of this study is to investigate the effectiveness of the use of multi constructional material in unit module plate of steel grid structure and provide engineers and designers an appropriate view point of multi-material topology optimization when making decision and information in design. The material distribution is implemented with the use of 3 materials in a given plate under prescribed loading and boundary conditions. Topology changes through automatic distribution of multi materials are presented during optimization procedures showing that there could be selective structural design possibility when using multi materials. The cross sections, stiffness and cost of material combination are useful information for engineers and designers in making design decision.
The ocean wave is hydrodynamically investigated to get more reliable solution. To improve the computational accuracy more fine grids are used with relatively less computer storage on the free surface. One element of the free surface is discretized into more fine grids because the free-surface waves are much affected by the grid size in the finite difference scheme. Here the multi-grid method is applied to confirm the efficiency for the S103 ship model by solving the Navier-Stokes equation for the turbulent flows. According to the computational result approximately 30% can be improved in the free surface generation, Finally the limiting streamlines show numerical result is similar to the experiment by twin tuft.