Recent earthquakes in Korea caused some damages to stone pagodas and thereby awakened the importance of earthquake preparedness. Korean stone pagodas which have been built with very creative style of material use and construction method are worthy of world heritage. Each stone pagoda consists of three parts: top; body; and base. However each tower is uniquely defined by its own features, which makes it more difficult to generalize the seismic assessment method for stone pagodas. This study has focused on qualitative preliminary evaluation of stone pagodas that enables us to compare the relative seismic performance across major aspects among many various Korean pagodas. Specifically an analytical model for multi-block stone pagodas is to be proposed upon the investigation of structural characteristics of stone pagoda and their dynamic behavior. A strategy for seismic evaluation of heritage stone pagodas is to be established and major evaluation factors appropriate for the qualitative evaluation are identified. The evaluation factors for overall seismic resisting behavior of stone pagodas are selected based on the dynamic motions of a rigid block and its limit state. Numerical simulation analysis using discrete element method is performed to analyze the sensitivity of each factor to earthquake and discuss some effects on seismic performance.
Polymer membrane-based gas separation has been attracting recent interest due to its ease of operation and low operational cost. Polyimides (PIs) are the most widely used polymers for this application due to their toughness and moderate gas separation properties. However, the gas separation performance of the current polymers, including PIs, do not meet the requirement for the industrial applications. We report herein multi-block PIM-co-PIs as novel polymer membranes for CO2 separation. Synthesis, characterization and their properties including gas separation performance of various compositions of PIM-PI block copolymer membranes will be discussed in details.
OBJECTIVES : The objective of this study is to analyze the nonlinear behavior of block pavements using multi-load level falling weight deflectometer (FWD) deflections. METHODS: Recently, block pavements are employed not only in sidewalks, but also in roadways. For the application of block pavements in roadways, the structural capacities of subbase and subgrade are important factors that support the carry traffic load. Multi-load level FWD testing was conducted on block pavements to analyze their nonlinear behavior. The deflection ratio due to the increase in load was analyzed to estimate the nonlinearity of block pavements. Finite element method with nonlinear soil model was applied to simulate the actual nonlinear behavior of the block pavement under different levels of load. RESULTS: The results of the FWD testing show that the center deflections in block pavements are approximately ten times greater than that in asphalt pavements. The deflection ratios of the block pavement due to the increase in the load range from 1.2 to 1.5, indicating that the deflection increased by 20~50%. The material coefficients of the nonlinear soil model were determined by comparing the measured deflections with the predicted deflections using the finite element method. CONCLUSIONS: In this study, the nonlinear behavior of block pavements was reviewed using multi-load level FWD testing. The deflection ratio proposed in this study can estimate the nonlinearity of block pavements. The use of nonlinear soil model in subbase and subgrade increases the accuracy of predicting deflections in finite element method.
Novel sulfonated poly(arylene ether sulfone)s multi-block copolymer membranes containing highly sulfonated hydrophilic blocks were synthesized. Different local concentration of sulfonic acid in their hydrophilic blocks affected chemical and physical properties of the SPAES. To investigate the effects of chemical composition on their membrane properties, different hydrophilic oligomers sharing same hydrophobic blocks gave us exact comparison of effect of hydrophilic blocks. The higher concentration of sulfonic acid groups resulted in higher proton conductivity under certain relative humidity conditions than that of the state-of-the-art perfluorinated sulfonic acid membrane and showed that the well-developed phase separation of SPAES.