Direct spring loaded pressure relief valve(DSLPRV) is a safety valve to relax surge pressure of the pipeline system. DSLPRV is one of widely used safety valves for its simplicity and efficiency. However, instability of the DSLPRV can caused by various reasons such as insufficient valve volume, natural vibration of the spring, etc. In order to improve reliability of DSLPRV, proper selection of design factors of DSLPRV is important. In this study, methodology for selecting design factors for DSLPRV was proposed. Dynamics of the DSLPRV disk was integrated into conventional 1D surge pressure analysis. Multi-objective genetic algorithm was also used to search optimum design factors for DSLPRV.
The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.
Recently, a concept of damped outrigger system has been proposed for tall buildings. Structural characteristics and design method of this system were not sufficiently investigated to date. In this study, control performance of damped outrigger system for building structures subjected to seismic excitations has been investigated. And optimal design method of damped outrigger system has been proposed using multi-objective genetic algorithm. To this end, a simplified numerical model of damped outrigger system has been developed. State-space equation formulation proposed in previous research was used to make a numerical model. Multi-objective genetic algorithms has been employed for optimal design of the stiffness and damping parameters of the outrigger damper. Based on numerical analyses, it has been shown that the damped outrigger system control dynamic responses of the tall buildings subjected to earthquake excitations in comparison with a traditional outrigger system.
Reduction of microvibration is regarded as important in high-technology facilities with high precision equipments. In this paper, smart control technology is used to improve the microvibration control performance. Mr damper is used to make a smart base isolation system amd fuzzy logic control algorithm is employed to appropriately control the MR damper. In order to develop optimal fuzzy control algorithm, a multi-objective genetic algorithm is used in this study. As an excitation, a train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Numerical simulation results show that the multi-objective genetic algorithm can provide optimal fuzzy logic controllers for smart base isolation system and the smart control system can effectively reduce microvibration of a high-technology facility subjected to train-induced excitation.
본 논문에서는 거더교 형식을 갖는 교량구조물의 격자 유한요소모델에 대한 모델개선을 위해 하이브리드 유전자 알고리즘에 기초한 유한요소 모델개선기법을 제안하였다. 하이브리드 유전자 알고리즘은 유전자 알고리즘과 심플렉스 최적화방법에 기초한 직접탐색기법으로 구성하였다. 제안된 기법에 적용할 수 있도록 고유진동수, 모드형상 및 정적 처짐에 대한 계측값과 유한요소해석 결과를 사용한 적합함수를 제시하고, 강성과 질량을 동시에 개선할 수 있도록 이들 세 가지 적합함수의 선형 조합 형태를 갖는 다중목적함수를 제시하였다. 제안된 방법은 2경간 연속 격자 유한요소모델의 수치예제와 단경간 플레이트 거더교에 대하여 검증하였다. 수치예제의 경우, 랜덤 노이즈를 고려한 계측오차의 영향을 수치해석적으로 평가하였다. 수치해석과 실험적 검증을 통해, 제안된 방법이 거더교 형식의 교량에 대한 유한요소 모델개선에 적합하고 효과적임을 검증하였다.
인접 구조물의 지진응답 제어를 위한 비선형 감쇠시스템의 최적 설계 방법에 관하여 연구하였다. 최적 설계를 위한 목적 함수로는 구조물의 응답과 감쇠기의 총 사용량을 고려하였으며, 상충하는 두 목적함수를 합리적인 수준에서 동시에 최소화하는 해를 구하기 위하여 유전자 알고리즘에 기반한 다목적 최적화 방법을 도입하였다. 또한, 최적화 과정에서 요구되는 비선형 시간이력해석을 수행하지 않고도, 비선형 이력감쇠기로 연결된 구조물의 지진응답을 효율적으로 평가하기 위하여 추계학적 선형화 방법을 접목하였다. 제시하는 방법의 효율성을 검증하기 위한 수치 예로서 20층과 10층의 인접 빌딩을 고려하였으며, 두 빌딩을 연결하는 비선형 감쇠시스템으로는 입력전압의 크기에 따라 변화하는 감쇠성능을 보이는 MR 감쇠기를 도입하였다. 제시하는 방법을 통하여 MR 감쇠기의 각 층별 최적 개수 및 감쇠용량을 결정할 수 있었으며, 이는 일반적인 균등분포 시스템에 비해 유사한 제어성능을 보이면서도 훨씬 경제적이었다. 또한, 인접구조물간 충돌에 대하여도 확률적으로 안정적인 거동을 보임을 검증하였으며, 제시하는 방법이 준능동 제어시스템의 최적 배치를 결정하기 위한 설계문제에도 적용할 수 있음을 보였다.
최적화 문제는 일반적으로 복수개의 목적식을 가지며, 이러한 목적식들의 대부분은 서로 충돌한다. 즉, 한 개의 목적식을 최적화하면 다른 목적식들은 최적화되지 못한다. 그러므로 하나의 목적식을 최적화하는 결정변수들이 다른 목적식들을 동시에 최적화시키기가 매우 어렵다. 따라서 최적화 개념도 하나의 목적식을 고려하는 경우와는 다른 관점에서 고려해야 한다.
본 연구에서는 다목표 최적화 문제를 해결하기 위한 새로운 실수코딩 유전자 알고리즘을 제시하고, 알고리즘의 효율 평가를 위해서 다목표 유전자 알고리즘에서 가장 일반적으로 사용되고 있는 MOGA 기법과 비교한다. 제시되는 다목표 실수코딩 유전자 알고리즘에서는 여러 개의 목적식을 평가하기 위한 적합도 함수를 제안하며, 목적식들을 만족하는 다양한 파레토 최적 집합을 구축하기 위한 방안을 제시한다. 개발된 다목표 최적화 알고리즘과 MOGA 기법의 효율 평가를 위해 두 알고리즘이 파레토 최적해의 집합을 어떻게 구성하는지 비교한다. 실수코딩 유전자 알고리즘의 실험을 위해 교배연산자는 단순교배 기법을 사용하고 돌연변이 연산자는 균등돌연변이 기법을 사용한다.
본 연구는 다목적 유전자알고리즘을 이용하여 Tank 모형의 매개변수를 추정하는데 있어서 선호적순서화(preference ordering)를 적용한 연구로써, 목적함수의 개수가 여러 개인 경우에 발생할 수 있는 파레토최적화의 단점을 해결하기 위한 것이다. 최적화를 위한 목적함수는 모두 4가지를 사용하였으며, 선호적순서화를 통해서 구한 2차 효율성(2nd order efficiency)을 가지면서 정도(degree)가 3인 4개의 해 중에서 1개의 해만을
본 연구의 목적은 개념적인 강우-유출모형인 Tank 모형의 매개변수를 산정하기 위한 다목적 유전자알고리즘의 적용성을 평가하는 것이다. 다목적 유전자알고리즘 기법으로는 최근에 가장 많이 사용되는 기법중의 하나인 NSGA-II를 채택하여 Tank 모형과 결합하였으며, 4가지 목적함수(유출용적오차, 평균제곱근 오차, 고수유량 평균제곱근 오차 및 저수유량 평균제곱근 오차)값을 최소화하는 형태의 목적함수를 적용하였다. NSGA-II는 목적함수의 개수가 많아지면