This study aims to observe the wind load characteristics around two-dimensional rotor blade of small wind turbine under high wind speed. The CFD analysis on the blade shape of NACA-4418 is performed to understand the wind load(i.e., drag and lift coefficient). In the results, the drag and lift coefficient were estimated to be 0.013, 0.44, respectively, at the wind speed 35m/s(wind speed at the height of wind tower, z=70m) and angle of attack 3°. By using the lift, drag coefficient and the appropriate assumption of the blade length, the number of blade and the tip speed ratio(TSR), the proper blade shape was obtained. On the base of this basic study, various conditions for Reynolds number and aerodynamic analysis including angle of attack according to parametric test need to study more in the future. Also assessment for the blade need to study safety on wind pressure coefficient and distribution according to wind characteristics.
본 연구에서는, NACA 익형의 받음각의 변화에 따른 영향을 파악하기 위한 연구로서, 수직축 다리우스 풍력발전기를 만들기 위한 기본적 형상을 이용하였다. 특히 수치해석에 있어 근접벽면 모델링에서 y+값이 1에 가까울수록 수치결과값이 정확해진다고 알려져 있다. 따라서 본 연구에서는, y+값의 변화를 통하여 최적의 y+값을 찾는 것을 목표로 하고 있다. 본 연구에서 사용한 레이놀즈 수는 360,000로 익형길이, 입구 유속은 각각 0.12m, 43.8m/s으로 설정하였다. 수치해석결과 익형의 양력계수는 받음각이 증가함에 따라 증가하는 경향을 보이며, 실속각 이후에 급격히 감소하는 것을 확인하였으며 양력계수는 받음각이 0o~10o까지 증가하였고 이후, y+값에 따라 다르지만 대략 10°~16°에서 급격히 떨어졌다. 본 논문에서 실험결과에 근거하여 수치해석에 y+값이 1에 가까운 것이 적절하다고 판단된다. 표면 압력 분포에서 최대값과 최소값 C/Cm은 1.89, 그리고 최대값의 변화는 받음각의 증가에 따라 앞쪽, 혹은 뒤쪽으로 이동 되었다.
Tb3+ 이온이 첨가 된 NaCa(PO3)3 형광체의 여기 및 방출 스펙트럼 및 레이저 분광 측정을 통하여 형광특성을 조사 하였다. 고상법으로 NaCa(PO3)3:Tb3+ 형광체를 합성하였다. X선 회절측정(XRD)을 사용하여 형광체의 결정 구조 및 결정성을 분석하여 Tb3+ 이온이 30 mol%까지 첨가되어도 형광체의 결정구조가 NaCa(PO3)3의 결정상을 유지하였다. NaCa(PO3)3:Tb3+(0.01 - 30mol %)형광체의 여기 및 방출 스펙트럼과 형광의 감쇠곡선을 상온에서 측정 하였다. NaCa(PO3)3:Tb3+의 여기 스펙트럼에서 205 ~ 245 nm 영역에서 넓은 Tb3+의 4f – 5d 전이에 의한 f - d 밴드가 나타났다. NaCa(PO3)3:Tb3+의 방출 스펙트럼에서 5D4 → 7FJ 전이에 의한 강한 피크와 5D3 → 7FJ 전이에 약한 피크가 관찰 되었다. 방출 스펙트럼의 형광 강도와 형광의 수명시간 분석을 통하여 Tb3+ 이온 사이의 에너지 전이 및 교차 이완이 확인되었다.
선박의 조종성능 향상을 위해 적용되고 있는 쌍동타의 유체력 평가를 위해 Re=1.5×104에서 쌍동타의 상 하부 러더 간격을 변화시켜 쌍동타 주위 유동을 계측하였다. 영각의 변화에 따른 쌍동타 주위에서 생성되는 와의 생성과 소멸 메커니즘을 이해하기 위해 속도 및 에너지 분포를 2-프레임 그레이레벨 상호상관 PIV기법을 이용하여 비교 분석하였다. 쌍동타의 상 하부 러더 간격 L=0.75C에서 물리적 한계영역으로 정의되었다.