The process control methods based on the statistical analysis apply the analysis method or mathematical model under the assumption that the process characteristic is normally distributed. However, the distribution of data collected by the automatic measurement system in real time is often not followed by normal distribution. As the statistical analysis tools, the process capability index (PCI) has been used a lot as a measure of process capability analysis in the production site. However, PCI has been usually used without checking the normality test for the process data. Even though the normality assumption is violated, if the analysis method under the assumption of the normal distribution is performed, this will be an incorrect result and take a wrong action. When the normality assumption is violated, we can transform the non-normal data into the normal data by using an appropriate normal transformation method. There are various methods of the normal transformation. In this paper, we consider the Box-Cox transformation among them. Hence, the purpose of the study is to expand the analysis method for the multivariate process capability index using Box-Cox transformation. This study proposes the multivariate process capability index to be able to use according to both methodologies whether data is normally distributed or not. Through the computational examples, we compare and discuss the multivariate process capability index between before and after Box-Cox transformation when the process data is not normally distributed.
Recently, the manufacturing process system in the industrial field has become more and more complex and has been influenced by many and various factors. Moreover, these factors have the dependent correlation rather than independent of each other. Therefore, the statistical analysis has been extended from the univariate method to the multivariate method. The process capability indices have been widely used as statistical tools to assess the manufacturing process performance. Especially, the multivariate process indices need to be enhanced with more useful information and extensive application in the recent industrial fields. The various multivariate process capability indices have been studying by many researchers in recent years. Hence, the purpose of the study is to compare the useful and various multivariate process capability indices through the simulation. Among them, we compare the useful models of several multivariate process capability indices such as MCpm, MC+pm and MCpl. These multivariate process capability indices are incorporates both the process variation and the process deviation from target or consider the expected loss caused by the process deviation from target. Through the computational examples, we compare these process capability indices and discuss their usefulness and effectiveness.
Process Capability (Cpk) is a representative measure of how well the producer manages dispersion and bias for the specifications needed by the consumer. This is expressed as a ratio of 6 times the natural tolerance to the specification. As the producer manages the dispersion small, the capacity index becomes higher. And it is classified into 5 grades according to the degree of management. It is a measure of the quality of processes used in most industrial fields. However, Cpk is calculated by only reflecting the mean and dispersion of the process, there is a disadvantage that it can not give information about the economic loss caused by the inconsistency of the process with the target value. Overcoming these drawbacks, process capability indexes reflecting various types of loss functions such as Cpm, C┼pm and Cpl have been developed. However, all of these previous studies have applied the limit to the consumer specification, which is based on the traditional and passive quality perception that the quality characteristic should exist within the limits of the consumer specification. In this study, we will develop ‘Customer Satisfaction Quality Indicator (CSQI)’ which is a quantitative indicator that can be fully evaluated when the manufacturer’s specification limit, which is an aggressive quality strategy, is applied. This is expected to be useful decision information for both producers and consumers.
Taguchi regarded the concept of quality as ‘total loss to society due to fluctuations in quality characteristics from the time of supplied to the customer.’ The loss function is a representative tool that can quantitatively convert the loss that occurs due to the deviation of the quality characteristic value from the target value. This has been utilized in various studies with the advantage that it can change the social loss caused by fluctuation of quality characteristics to economic cost. The loss function has also been used extensively in the study of producer specification limits. However, in previous studies, only the second order loss function of Taguchi is used. Therefore, various types of losses that can occur in the process can’t be considered. In this study, we divide the types of losses that can occur in the process considering the first and second loss functions and the Spiring’s reflected normal loss function, and perform total inspection before delivering the customer to determine the optimal producer specification limit that minimizes the total cost. Also, we will divide the quality policy for the products beyond the specification limits into two. In addition, we will show the illustration of expected loss cost change of each model according to the change of major condition such as customer specifications and maximum loss cost.
In the industrial fields, the process capability index has been using to evaluate the variation of quality in the process. The traditional process capability indices such as Cp, Cpk, Cpm, and C┼pm have been applied in the industrial fields. These traditional process capability indices are mainly applied in the univariate analysis. However, the main streams in the recent industry are the multivariate manufacturing process and the multiple quality characteristics are corrected each other. Therefore, the multivariate statistical method should be used in the process capability analysis. The multivariate process indices need to be enhanced with more useful information and extensive application in the recent industrial fields. Hence, the purpose of the study is to develop a more effective multivariate process index (MCpI ) using the multivariate inverted normal loss function. The multivariate inverted normal loss function has the flexibility for the any type of the symmetrical and asymmetrical loss functions as well as the economic information. Especially, the proposed modeling method for the multivariate inverted normal loss function (MINLF) and the expected loss from MINLF in this paper can be applied to the any type of the symmetrical and asymmetrical loss functions. And this modeling method can be easily expanded from a bivariate case to a multivariate case.
경사지를 절개하고 콘크리트 구조물을 설치한 다음 구조물 벽과 천정을 단열하고 흙으로 덮어 엄개형 지하저장고를 개발하였다. 가로 4m, 세로 9m, 높이 5m의 저장고를 두께 400mm의 철근콘크리트 벽과 천정으로 설치하고, 외부를 콜탈로 방수한 다음 발포폴리스티렌 100mm로 단열하고, 비닐필름으로 방수한 다음 다시 외부를 자갈과 흙으로 2,000mm 두께로 복토하여 3중 중단열 하였다. 개폐 시 냉기의 손실을 억제하기 위하여 출입문을 2중문으로 설치하고 냉각기는 3마력 용량으로 설치하여 같은 크기의 기존 지상식 저장고의 5마력보다 40% 절약하였다. 여기에 봄배추, 가을배추, 겨울배추를 저장 시험한 결과 월평균 소비전력량이 15.2kwh/㎡로 지상식의 19.3-21.9kwh/㎡보다 21.3-30.6% 절약되었고 암반굴착식 지하저장고보다는 47.0% 절약되었다. 엄개형 지하저장고의 건설비는 소형(10평)은 지상저장고보다 고가이나, 50평형은 지상저장고와 비슷하였고, 25평형 4개를 연결하여 건설하면 더 저렴한 것으로 추정되었다. 저장배추의 품질은 처음 저장했던 2016년 가을배추는 지상저장고 저장 배추보다 낮았으나, 2017년 겨울배추, 봄배추, 가을배추는 지장저장고 저장 배추와 유의적인 차이가 없었다. 엄개형 지하저장시스템은 배추 등 청과물을 연중 저비용으로 저장할 수 있는 지상저장고를 대체할 수 있는 경제성 있는 저장시스템으로 평가되었다.
Recently, service quality must reflect several demands of customers who show rapid and various changes so as to be compared with the past. So, objective and rapid measuring methods for service quality are necessary. For them, first of all, service company must calculate their standard of service quality accurately by measuring service quality exactly. Kano classified the degree of influence that is the degree of correspondence of the quality attributes of products and services to the subjective satisfaction of customers. As a result, the types of qualities are classified as attractive, must be, one dimensional, and indifference attributes. They have been widely used quality attributes in various industrial fields up to now.
However, Kano model has a limit that it ignores the characters of the next frequent numbers even though there are not much gap comparing to the most frequent number in the questionnaire answers. The limit is attributed to the character of Kano model that the most frequent number is accepted as the only quality character.
Timko calculated the customer satisfaction coefficient by using Kano’s method and studied the differences in quality character by classifying the quality characteristics in a graphical way through the relationship between the satisfaction and the dissatisfaction coefficient.
In this study, we used the quality level determination method of the 7-point Likert scale, which takes the weight into account, to complement the deficiencies of the existing Kano model. We also developed and applied a Potential Satisfaction Level (P) and Potential Customer Demand Improvement (PCDI) Index to present a new approach to the determination of service quality attributes. To measure the level of potential service satisfaction and to understand the degree of improvement, we collected specimens of 51 participants who has been trained in the National Strategy Business Training Program, which has been managed by government agent, and analyzed the results.1)
Climate change is the biggest environmental issue of our times. A variety of activities to reduce greenhouse gas emissions have been in progress to observe the Kyoto Protocol. Especially, the Energy Target Scheme is created to reduce greenhouse emission with the supervision of Korean government. This includes Green-house Gas Information Systems to promote activities in the private sector to reduce green-house gas emissions, to cut a cost of energy use, and to reduce GHG emissions. Also, the system has calculated the amount of greenhouse gases. Without any additional investment, 2.75% savings are increased over the previous year. In service sector, a cooperation of customers and employees is necessary. A reduction of GHG emissions requires a proper service organization, considering an amount of investment and payback period. Without any additional investment or replacement, employees can save energy easily turning off ventilation systems an hour before employees’ departure, installing timers to turn off water purifiers and vending machines after some period of no use. The Green-house Gas Information System is similar to that of Environmental Management System. However, the Excel is the best program to calculate an amount of green-house gas emissions, and to assess for a reduced amount of GHG emissions. A goal of this research is to propose a practical method in the private sector to calculate an amount of green-house gases. The Green-house gas Information System based on Excel spreadsheet gives standards for good evaluation. The greenhouse gas information system establishes and executes the policies and objectives related to greenhouse gas emissions Similar to ISO 14001 environment management system structures, the advantages of using simplified Excel Sheet for calculating GHG emissions and reducing GHG emissions are easy to access.
A one-shot system (device) refers to a system that is stored for a long period of time and is then disposed of after a single mission because it is accompanied by a chemical reaction or physical destruction when it operates, such as shells, munitions in a defense weapon system and automobile airbags. Because these systems are primarily related with safety and life, it is required to maintain a high level of storage reliability. Storage reliability is the probability that the system will operate at a particular point in time after storage. Since the stored one-shot system can be confirmed only through inspection, periodic inspection and maintenance should be performed to maintain a high level of storage reliability. Since the one-shot system is characterized by a large loss in the event of a failure, it is necessary to determine an appropriate inspection period to maintain the storage reliability above the reliability goal. In this study, we propose an optimal inspection policy that minimizes the total cost while exceeding the reliability goal that the storage reliability is set in advance for the one-shot system in which periodic inspections are performed. We assume that the failure time is the Weibull distribution. And the cost model is presented considering the existing storage reliability model by Martinez and Kim et al. The cost components to be included in the cost model are the cost of inspection c1, the cost of loss per unit time between failure and detection c2, the cost of minimum repair of the detected breakdown of units c3, and the overhaul cost c4 of ≤ . And in this paper, we will determine the optimal inspection policy to find the inspection period and number of tests that minimize the expected cost per unit time from the finite lifetime to the overhaul. Compare them through numerical examples.
김치 제조공정 중 절임배추 제조공정은 원료검사, 세절, 절임, 세척, 탈수, 포장의 공정으로 구성되며 절임배추의 품질은 제조공장의 생산설비, 절임환경 및 절임조건에 따라 달리 나타난다. 생산시스템은 제조공정을 효율적으로 수행하기 위한 사람과 설비 및 일하는 방법인 업무 프로세스의 집합을 말하며 제조현장과 관련된 여러 가지 자동화 시스템 중 MES(Manufacturindg Execution System)는 주문에서 최종 제품에 이르기까지 생산 활동에 필요한 최적의 정보를 관리하는데 필요한 시스템이다. 본 연구에서는 절임배추 제조공정을 보다 효율적으로 관리 할 수 있는 절임배추 제조관리시스템(MES)을 개발하고 이를 통해, 김치 제품의 생산관리를 원활하게 할 수 있도록 하였다. MES 데이터베이스 시스템 설계 및 구현을 위한 ERD(Entity Relationship Diagram)는 제조 공정별로 품질기준을 설정하여 표준화하여 적용하였으며 절임배추의 생산관리는 바코드 형식의 NFC(Near Field Communication) Tag를 이용하였다. 원자재관리를 위한 모니터링 시스템은 스마트 폰을 연동한 APP(Application)형태로 Eclipse 4.4.1 luna를 통해 개발하였으며, 모든 데이터의 통신은 MES내의 Open API(Application Programming Interface)를 통해 주고 받도록 설계하였다. 결과적으로 절임배추 생산을 위한 원재료 입출고 이력 및 생산이력은 MES 시스템을 이용하여 관리가 가능하며, 추후 양념 등을 포함한 김치 제품을 관리할 수 있는 기능을 포함하는 전주기 김치 제조관리시스템의 구축이 필요하다.
As the functions and structure of the system are complicated and elaborated, various types of structures are emerging to increase reliability in order to cope with a system requiring higher reliability. Among these, standby systems with standby components for each major component are mainly used in aircraft or power plants requiring high reliability. In this study, we consider a standby system with a multi-functional standby component in which one standby component simultaneously performs the functions of several major components. The structure of a parallel system with multifunctional standby components can also be seen in real aircraft hydraulic pump systems and is very efficient in terms of weight, space, and cost as compared to a basic standby system. All components of the system have complete operation, complete failure, only two states, and the system has multiple states depending on the state of the component. At this time, the multi-functional standby component is assumed to be in a non-operating standby state (Cold Standby) when the main component fails. In addition, the failure rate of each part follows the Weibull distribution which can be expressed as increasing type, constant type, and decreasing type according to the shape parameter. If the Weibull distribution is used, it can be applied to various environments in a realistic manner compared to the exponential distribution that can be reflected only when the failure rate is constant. In this paper, Markov chain analysis method is applied to evaluate the reliability of multi-functional multi-state standby system. In order to verify the validity of the reliability, a graph was generated by applying arbitrary shape parameters and scale parameter values through Excel. In order to analyze the effect of multi-functional multi-state standby system using Weibull distribution, we compared the reliability based on the most basic parallel system and the standby system.
Climate change has been identified as one with the greatest challenges facing nations, government, business and over future decades. Activities to reduce greenhouse gas emissions by the Kyoto Protocol, the international community has been in progress. Korea also has introduced the Emission trading system to reduce greenhouse emission from the supervision of the government. Greenhouse gases emissions quantity should be internationally recognized. Mutual Recognition Arrangement should be recognized as the same greenhouse gas emission. International recognition of domestic verification body of international mutual recognition is required. Efforts are needed to secure the equivalence between the emission rights through direct cooperation with the relative nation accreditation body. Early entry into the IAF/PAC GHG MLA is essential for demonstrating equivalence between greenhouse gas emissions. Emissions trading will also require connection to the EU ETS, California, USA, and Tokyo, Japan to link Emissions trading. In the case of establishing accreditation standards and accreditation criteria, it will be necessary to distinguish between the domestic Energy Target Management System and the Emission Trading System. Independent greenhouse gases verification bodies should be established to meet the requirements of IAF and PAC. It is necessary to revise the qualification criteria for the verification of the greenhouse gas verification body according to international standards requirements. It is necessary to support the role of accreditation bodies of domestic greenhouse gas verification bodies. It is required to join international organizations of international mutual recognition of international trade and the need for pilot projects to link greenhouse gas emissions. The core link to our emission trading system is called EU-ETS, and we will need to join the IAF/PAC GHG MLA GHG. The International Mutual Recognition Agreement (IAF) is expected to allow international interoperability of GHG emissions verification between EA and the PAC. By signing a PAC GHG MLA, it will need to be prepared to prepare for the pilot project to link the emission trading system.
Process quality control, which prevents problems and risks that may occur in products and processes, has been recognized as an important issue, and SPC techniques have been used for this purpose. Process Capability Index (PCI) is useful Statistical Process Control (SPC) tool that is measure of process diagnostic and assessment tools widely use in industrial field. It has advantage of easy to calculate and easy to use in the field. Cp and Cpk are traditional PCIs. These traditional Cp and Cpk were used only as a measure of process capability, taking into account the quality variance or the bias of the process mean. These are not given information about the characteristic value does not match the target value of the process and this has the disadvantage that it is difficult to assess the economic losses that may arise in the enterprise. Studies of this process capability index by many scholars actively for supplement of its disadvantage. These studies to evaluate the capability of situation of various field has presented a new process capability index. Cpm is considers both the process variation and the process deviation from target value. And Cpm + is considers economic loss for the process deviation from target value. In this paper we developed an improved Expected Loss Capability Index using Reflected Normal Loss Function of Spring. This has the advantage that it is easy to realistically reflect the loss when the specification is asymmetric around the target value. And check the correlation between existing traditional process capability index (Cpk) and new one. Finally, we propose the criteria for classification about developed process capability index.
Control Chart is a graph which dots the characteristic values of a process. It is the tool of statistical technique to keep a process in controlled condition. It is also used for investigating the state of a process. Therefore many companies have used Control Chart as the tool of statistical process control (SPC). Products from a production process represent accidental dispersion values around a certain reference value. Fluctuations cause of quality dispersion is classified as a chance cause and a assignable cause. Chance cause refers unmanageable practical cause such as operator proficiency differences, differences in work environment, etc. Assignable cause refers manageable cause which is possible to take actions to remove such as operator inattention, error of production equipment, etc. Traditionally x-R control chart or x-s control chart is used to find and remove the error cause. Traditional control chart is to determine whether the measured data are in control or not, and lets us to take action. On the other hand, RNELCC (Reflected Normal Expected Loss Control Chart) is a control chart which, even in controlled state, indicates the information of economic loss if a product is in inconsistent state with process target value. However, contaminated process can cause control line sensitive and cause problems with the detection capabilities of chart. Many studies on robust estimation using trimmed parameters have been conducted. We suggest robust RNELCC which used the idea of trimmed parameters with RNEL control chart. And we demonstrate effectiveness of new control chart by comparing with ARL value among traditional control chart, RNELCC and robust RNELCC.