본 연구의 목적은 Navier-Stokes 유체와 같은 대용량 문제를 위한 최적화 기법의 개발에 있다. 이를 위해 본 연구에서는 reduced Hessian sequential quadratic programming을 개발하였다. 첫째, 유체의 해석을 위한 평형 방정식을 최적화 과정에서 제거하여 변수를 줄였고, 또한 평형방정식과 최적화 과정에서 연속기법을 사용하여 최적해를 보장하면서 더욱 해에 쉽게 접근하도록 하였다. 그리고 각 단계에서는 테일러 시리즈를 이용한 근사치를 이용하여 각 단계에서 대단히 좋은 초기치 값을 제공하여 최적해에 더욱 빠르게 접근하게 하고 아울러 유체의 평형방정식을 풀 때에도 해에 더욱 빠르고 쉽게 접근하도록 하였다. 이 기법을 항력을 줄이기 위한 유체의 최적 제어를 위한 문제에 적용하였다. 유체의 흐름을 제어하기 위하여 물체의 경계면에서 유체의 흡입(suction)과 방축(injection)이라는 기법을 사용하여 경계면에서 속도를 제어하였고, 목적함수로써 항력을 표현하기 위하여 에너지 소실의 변화율을 사용하였다. 예제를 통해 본 연구에서 개발한 최적화 기법의 효용성을 입증하였다.
다양한 평면변형률 시편들의 균열선단 탄소성 응력상태들에 대한 경우, 여러 연구들을 동해, J-T접근방법의 유효 타당성이 충분히 검증되어졌다. 그러나 J-T 두 변수에 의한 균열선단 응력장 예측의 타당성을 보편화시키기 위해서는, 평면변형률 시편들과 같이 이상화된 구조가 아닌 실제적인 3차원 구조형상에 대한 연구가 필요하다. 이를 배경으로 본 연구에서는 평판과 직관에 대해 완전 3차원 유한요소해석을 수행하여 얻어진 응력장과 계산된 J-T두 변수로 예측되는 응력장을 비교함으로써, J-T 접근방법의 유효성 내지 한계성을 규명하였다.