본 논문에서는 프리팹 구조물의 품질관리를 위한 딥러닝 및 비전센서 기반의 조립 성능 평가 모델을 개발하였다. 조립부 검출을 위 해 인코더-디코더 형식의 네트워크와 수용 영역 블록 합성곱 모듈을 적용한 딥러닝 모델을 사용하였다. 검출된 조립부 영역 내의 볼트 홀을 검출하고, 볼트홀의 위치 값을 산정하여 k-근접 이웃 기반 모델을 사용하여 조립 품질을 평가하였다. 제안된 기법의 성능을 검증 하기 위해 조립부 모형을 3D 프린팅을 이용하여 제작하여 조립부 검출 및 조립 성능 예측 모델의 성능을 검증하였다. 성능 검증 결과 높은 정밀도로 조립부를 검출하였으며, 검출된 조립부내의 볼트홀의 위치를 바탕으로 프리팹 구조물의 조립 성능을 5% 이하의 판별 오차로 평가할 수 있음을 확인하였다.
A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's λ, D&B(Rij) & Tou are discussed.
산업의 발전에 따라 기반시설 및 인구 등이 대도시에 밀집되어, 도시홍수방어는 인명피해 뿐만 아니라 재산피해 저감 차원에서도 매우 중요한 문제 가 되었다. 요즘은 이러한 도시유역의 유출해석을 보다 정확하게 하기 위해 시강우나 분단위의 강우자료를 활용하고 있다. 하지만 기후변화 시나리오 와 같은 미래 강우시나리오는 현재 일단위 수준으로 제공되므로 미래 강우에 대한 확률빈도 해석에 제한이 있다. 이에 본 연구에서는 추계학적 기법을 이용해 일강우 자료를 시강우 자료로 분해하고자 하였다. 일자료를 시자료로 분해하기 위해 과거 시강우 자료를 기반으로 Gram Schmidt 변환과 K 개의 최근접 표본 중 하나를 재추출하는 비모수적인 기법(KNNR)을 적용하였다. 이 방법은 연유출량을 월유출량으로 분해하기 위해 개발된 것이다. 하지만 강우자료는 유출량 자료와 달리 확률밀도가 작아 일강우를 시강우로 분해하는 데 직접 적용하는 경우 결과가 실제와 유사한 통계 패턴을 갖는 다고 보기 어려웠다. 이를 보완하기 위해 본 연구에서는 분해하고자 하는 일자의 전일과 후일을 포함한 3일 강우패턴을 7개로 구분하고 동일 패턴을 가진 자료들만 분해에 이용하도록 하여 강우자료에 대한 적용성을 높였다. 과거 52년간의 서울기상관측소 시강우 자료를 이용하여 강우자료의 분해 에 대한 결과를 분석한 결과, 분해된 시강우 자료가 관측된 시강우자료와 통계적으로 매우 유사한 것을 확인하였다. 향후 기후변화자료의 시강우 분해 등에 활용하여 보다 정확한 도시유출에 대한 빈도해석 등에 적용할 수 있을 것으로 판단된다.
The field of vehicle routing is currently growing rapidly because of many actual applications in truckload and less than truckload trucking, courier services, door to door services, and many other problems that generally hinder the optimization of transportation costs in a logistics network. The rapidly increasing number of customers in such a network has caused problems such as difficulty in cost optimization in terms of getting a global optimum solution in an acceptable time. Fast algorithms are needed to find sufficient solutions in a limited time that can be used for real time scheduling. In this paper, the nearest L-method (NLNM) is proposed to obtain a vehicle routing solution. String neighbors of different lengths were chosen, tested and compared. The applied de crossing procedure is meant to solve the routes by NLNM by giving a better solution and shorter computation time than that of NLNM with long string neighbors.