도시 지역의 불투수층에 내린 강우는 지표면을 따라 흐르다가 대부분 우수관으로 유입되어 유역에서 배출된다. 그러므로 도시 우수관의 설계빈도를 결정하고 설계홍수량을 결정하는 일은 도시 홍수 저감을 위한 구조적인 대책 중 가장 우선적으로 고려되어야 하고, 또 가장 중요한 대책이기도 하다. 그러나 최근 들어 기후변화 등으로 인해 짧은 시간에 큰 강우강도의 호우가 발생하는 일이 잦아지고 있다. 이런 형태의 호우는 불투수면이 많은 도시 지역에서 갑작스럽게 유출량을 증가시켜 증가된 유출량이 일시에 우수관으로 유입되지 못하고 일시적이고 국부적인 홍수를 야기하기도 한다. 그러므로 도심지의 홍수 저감을 위해 우수관망의 적절한 설계가 매우 중요하다. 그러나 무한정 큰 관경의 우수관을 건설하는 것은 경제적으로 타당한 방법이 될 수 없으므로, 적절한 크기의 우수관을 설계하고 유출해석의 신뢰도를 높이기 위한 노력이 필요하다. 그러므로 본 연구에서는 과거 홍수피해가 빈번히 발생했던 도시유역들 중 유역면적과 우수관망의 구조가 다른 4개의 도시를 서울과 부산지역에 선정하여 다양한 강우에 따른 유출해석을 실시하였다. 서울과 부산 기상관측소의 과거 호우 자료에 대한 EPA-SWMM 모형에서의 유출해석 결과, 첨두강우량의 변화에 따른 첨두유출량의 변화를 선형회귀모형으로 분석하였다. 회귀모형의 결정계수와 95% 신뢰구간 및 변동계수를 비교하고, 수계밀도 개념을 적용하여 첨두유출량의 변화를 해석한 결과, 우수관망이 조밀하게 건설되어 수계밀도가 높을수록 증가된 첨두강우량에 따라 함께 증가하는 첨두유출량의 예측이 상대적으로 정확하게 가능함을 확인하였다. 이는 수계밀도가 높을수록 유출응답이 빨라지고 국부적인 우수관의 통수능 부족으로 발생하는 침수의 발생 가능성이 낮아지기 때문인 것으로 보이며, 갑작스러운 강우에 대한 대응이 수월함을 의미한다. 이러한 우수관의 구조적인 특성에 따른 유출 응답 속도를 고려하여 우수관을 설계한다면, 보다 효율적인 우수관 설계가 가능할 것으로 판단된다.
산업의 발전에 따라 기반시설 및 인구 등이 대도시에 밀집되어, 도시홍수방어는 인명피해 뿐만 아니라 재산피해 저감 차원에서도 매우 중요한 문제 가 되었다. 요즘은 이러한 도시유역의 유출해석을 보다 정확하게 하기 위해 시강우나 분단위의 강우자료를 활용하고 있다. 하지만 기후변화 시나리오 와 같은 미래 강우시나리오는 현재 일단위 수준으로 제공되므로 미래 강우에 대한 확률빈도 해석에 제한이 있다. 이에 본 연구에서는 추계학적 기법을 이용해 일강우 자료를 시강우 자료로 분해하고자 하였다. 일자료를 시자료로 분해하기 위해 과거 시강우 자료를 기반으로 Gram Schmidt 변환과 K 개의 최근접 표본 중 하나를 재추출하는 비모수적인 기법(KNNR)을 적용하였다. 이 방법은 연유출량을 월유출량으로 분해하기 위해 개발된 것이다. 하지만 강우자료는 유출량 자료와 달리 확률밀도가 작아 일강우를 시강우로 분해하는 데 직접 적용하는 경우 결과가 실제와 유사한 통계 패턴을 갖는 다고 보기 어려웠다. 이를 보완하기 위해 본 연구에서는 분해하고자 하는 일자의 전일과 후일을 포함한 3일 강우패턴을 7개로 구분하고 동일 패턴을 가진 자료들만 분해에 이용하도록 하여 강우자료에 대한 적용성을 높였다. 과거 52년간의 서울기상관측소 시강우 자료를 이용하여 강우자료의 분해 에 대한 결과를 분석한 결과, 분해된 시강우 자료가 관측된 시강우자료와 통계적으로 매우 유사한 것을 확인하였다. 향후 기후변화자료의 시강우 분해 등에 활용하여 보다 정확한 도시유출에 대한 빈도해석 등에 적용할 수 있을 것으로 판단된다.
급격히 발전하는 도시지역 및 산업단지의 경우 불투수지역이 대부분이며, 이로 인해 유출이 증가함에 따라 내수침수가 발생할 확률이 높아지고 있다. 도시지역의 유출해석은 대부분 SWMM모형을 이용하여 강우-유출해석을 수행하고 있으나 이러한 모형은 실제 자연 현상을 해석하는데 한계가 있으며, 모형 자체도 불확실성을 가지고 있어 정확한 유출해석을 하는데 어려움이 있다. 따라서 본 연구에서는 모형의 매개변수를 조사하고 불확실성을 가지는 매개변수를 선정한 후 매개변 수의 불확실성 정도를 불확실성 정량화 지수를 이용하여 정량화하였다. 수행 결과 관조도계수의 불확실성이 가장 크며, 유출량에 미치는 영향도 가장 컸다. 그러므로 우수관거 설계 시 관조도계수 추정을 보다 정확히 산정하여야 하며, 불확실성 정도를 예측하여 유출해석에 반영하고, 각 매개변수가 가지는 특성을 파악한다면 내수 침수를 예방하는데 큰 기여를 할 것으로 판단된다.
최근 이상기후 및 도시화로 인한 홍수가 빈번히 발생하고 있으며, 도시의 홍수피해는 대부분 우수관망의 통수능 부족으로 인한 내수 침수로 분석되고 있다. 또한, 홍수로 인한 인명 및 재산피해를 줄이기 위해서는 정확한 강우-유출 해석이 이루어져야 하지만, 강우-유출 해석시 사용되는 매개변수의 정확한 입력값 및 모형에서의 불확실성을 내포하고 있어 정확한 해석을 하는데 어려움이 있다. 따라서 본 연구 에서는 강우-유출 모형 및 빗물 펌프장 관련 불확실성 매개변수를 선정하였다. 또한, 주요 매개변수를 선정하기 위해 Pedigree matrix를 이용하였으나, 데이터 품질 평가시 어려움이 있어 본 연구에 맞게 Pedigree matrix를 수정하여 제안하였다. 본 연구에서는 불확실성 매개변수를 선정하기 위해 기존 문헌 등을 참고하여 선정하였다. 선정 결과, 모형에서의 불확실성 매개변수는 총 6개(유역폭, 불투수면적비율, 불투수유역의 조도계수, 투수 및 불투수유역의 조도계수, CN, 관 조도계수)이며, 빗물펌프장 관련 불확실성 매개변수는 펌프장 운영자료 4개(내수위, 외수위, 펌프 토출량, 강우량)로 선정하였다. 또한, 선정된 불확실성 매개변수의 정량적 평가를 위해 불확실성 산정 지수 공식 및 수정된 Pedigree matrix를 이용하여 주요 매개변수를 선정하였다. Heijungs (1996)가 제안한 사분면을 이용하였으며, 불확실성 지수 및 Pedigree matrix의 DQI를 이용하여 사분면으로 구분한 결과 1분면에 위치한 매개변수는 유역폭, 투수 및 불투수유역의 조도계수로 가장 불확실성 요소가 크게 나타났다. 불확실성이 높은 매개변수를 측정시 보다 정밀한 매개변수 측정이 필요하며, 강우-유출 해석 및 빗물펌프장 운영자료 검토시 주요 우선 매개변수 선정에 도움을 주리라 판단된다.
최근 이상기후로 인해 급격하게 도시홍수피해가 빈번하게 발생하고 있고, 그로 인해 인명 및 재산피해가 급증하고 있다. 본 연구는 RCP 기후변화 시나리오에 따른 강우량을 가산1 빗물펌프장 유역에 적용하여 강우-유출 해석을 하였다. RCP 기후변화 시나리오 2.6, 4.5, 6.0, 8.5에 따라 2100년까지 예측된 강우량 자료의 일단위에서 시간단위로의 시간 상세화기법(Downscaling) 중 하나인 인공신경망이론을 적용하여 시간 단위 자료로 변환하였다. 이후에 매개변수 최적화된 SWMM을 사용하여 가산1 빗물펌프장 유역의 우수관망을 통해 강우-유출모의를 하고, 이에 대해 기후변화가 미치는 영향을 분석하였다. 본 연구의 결과는 향후에 정부나 지자체에서 향후 정책을 결정하는데 유용한 정보로 활용될 수 있을 것으로 판단된다.
최근 이상기후 및 급속한 도시화로 이한 불투수 면적비율이 증가되면서 내수침수 피해가 급증하고 있다. 내수침수는 주로 내수배제의 불량으로 발생하며, 막대한 인명 및 재산피해를 야기하고 있다. 이러한 피해를 막고 효율적인 도시홍수방어시스템을 설계하기 위해서는 정확한 강우-유출 모형의 해석이 필요하지만 실제 자연 현상을 해석하는데 많은 불확실성이 존재한다. 본 연구에서는 모형의 매개변수들이 가지는 불확실성 분석을 수행하고, 불확실성 정량화 지수를 제안하였다. 도시유역의 유출해석에 사용되는 SWMM 모형의 매개변수 중 6개(유역폭, 불투수면적비율(%), 투수 및 불투수유역 조도계수, CN, 관조도계수)를 대상으로 불확실성 분석을 수행하였으며, 베타분포를 적용하여 Monte Carlo Sampling 기법으로 총 100개의 시나리오로 계산하였다. 계산결과 투수 및 불투수유역의 조도계수와 관조도계수의 총불확실성이 다른 매개변수들에 비해 크게 계산되어 조도계수값의 결정이 어려운 것을 알 수 있었으며, 불확실성 정량화 지수를 계산한 결과 관조도계수가 가장 크고 CN값이 가장 작은 것으로 계산되었다. 유역폭, 불투수면적비율, CN값은 매개변수값이 증가할수록 총유출량도 증가하였으며, 이 중 CN값의 변화에 따른 총유출량 증가량은 매개변수 증가량을 알면 거의 정확히 결정이 가능한 것으로 불확실성 정량화 지수가 계산되어 불확실성이 매우 낮은 것으로 나타났다. 관조도계수의 변화에 따라 총유출량의 변화를 결정하는 것이 가장 불확실한 것으로 계산되었으며, 총불확실성도 관조도게수가 가장 컸으므로, 도시유역의 유출 계산에 가장 큰 불확실성을 야기하는 매개변수는 관조도계수인 것으로 나타났다.
불투수지역이 대부분인 도시유역의 경우, 우수관을 통한 우수의 배제가 유출시스템의 대부분을 차지한다. 도시지역의 우수관로 및 빗물펌프장의 용량을 설계하기 위해서는 일반적으로 강우빈도해석을 통해 계산된 빈도별 강우를 Huff시간분포 등을 사용하여 일괄적으로 시간 분포시켜 유출을 계산한다. 그러나 이러한 설계는 기후변화 등으로 인해 게릴라성 호우 등이 빈번히 발생하고, 평균적인 강우강도가 증가하고 있는 현실의 불확실성을 제대로 반영하지 못한다. 그러므로 본 연구에서는 설계강우사상의 첨두강우강도가 가지는 불확실성을 분석하기 위해, 설계강우사상을 시간 분포시키는 대표적인 방법이며, 실제 본 연구의 적용지역인 가산1빗물펌프장의 설계에 사용된 Huff 2분위 방법과 과거 발생한 실제 강우사상들을 이용한 유출해석을 실시하였다. 그 결과, 유역 내 지체효과가 거의 없는 도시지역의 경우에는 총강우량보다는 첨두강우강도에 의해 유역 내 홍수가 유발된다는 것을 확인하였고, 이를 입증하기 위해 회귀분석을 수행하였다. 즉, 총강우량이 같다고 하더라도, 첨두강우강도에 따라 상류 우수관의 범람이 야기될 수 있으며, 이러한 현상은 같은 빈도의 설계강우량이라고 해도 지속시간이 짧은 경우에 더 큰 첨두강우강도를 가지므로 더욱 두드러졌다. 이것을 본 연구에서는 설계강우사상를 시간분포시킴에 의해 야기되는 첨두강우강도의 불확실성이라고 정의하고, 이에 대한 정량화 및 고려가 도시지역의 유출시스템 설계 시 고려되어야 함을 제안하였다.
최근 기상이변에 인한 집중호우 및 산업화와 경제 발전에 따른 도시화는 수문학적 변화를 일으키며 도심지 내의 침수를 발생시키는 원인이 되고 있다. 또한 도로와 산업단지 등 불투수면적의 증가로 인해 우수가 지표로 침투되는 능력이 저하되어 표면유출량이 증가함으로서 도시 내 홍수를 유발시키는 가능성을 높이고 있다. 이러한 기상이변에 따른 집중호우가 주거, 공공시설, 산업단지 등이 밀집되어 있는 도시 유역 내에 발생할 경우 인명 피해 및 물적 피해가 발생하게 된다. 이러한 이유로는 재해에 대한 높은 취약성을 도시가 지니고 있기 때문이다. 따라서, 본 연구에서는 서울시 25개의 행정구역을 대상으로 홍수 취약성 평가를 수행하기 위하여 정부간 기후변화 위원회(IPCC)에서 기후변화에 따른 취약성 평가기법을 적용하여 행정구별 취약성-탄력성지수(VRI)를 산정하였다. 취약성-탄력성지수(VRI)를 산정하기 위하여 본 연구에서는 취약성 인자를 선정한 후 서로 단위가 다른 변수들 간의 계산을 위해 T-Score 방법을 이용하여 표준화하였다. 또한 의사결정자의 주관적 판단에 의존하지 않고 구성된 데이터에 의해서만 가중치를 계산 할 수 있는 객관적인 방법인 Entropy방법을 이용하여 각 인자별 가중치를 적용 후 취약성-탄력성지수(VRI)를 산정하였다. 산정 결과 송파구가 홍수 피해를 완화하고 대처할 수 있는 능력이 다른 행정구역 보다 높아 취약성-탄력성지수 값이 높게 산정되어 홍수 취약성에 대해 가장 안전하게 나타났다. 또한 강서구, 금천구, 양천구의 경우 다른 행정구역보다 홍수를 대비할 수 있는 능력에 비해 홍수를 유발시키는 지표 값들이 현저히 높게 나타나 홍수 취약성-탄력성 지수 값이 가장 낮게 산정되었다고 판단된다. 향후 서울시 25개 “행정구” 단위로 평가하는 것 보다 “행정동” 단위로 구분한 후 동별 유역특성을 고려하여 추가적으로 보완한다면 사전에 홍수 피해 분석에 많은 도움을 줄 수 있을 것으로 판단된다.
최근 들어 기후변화와 같이 단일 국가에 국한되지 않은 재해 및 재난에 대한 논의가 활발해지는 가운데 국제 공동연구 및 국제화에 대한 관심과 저변이 확대되고 있다. 이에 재해관리 및 안전교육 분야 역시 국제 공동 프레임워크(Framework) 구축이나 공동 대응에 대한 관심이 증대되고 있다. 그러므로 본 연구에서는 현재 선진국에서 진행되고 있는 재난안전교육 현황을 조사하고, 국내의 소방방재청과 대학을 중심으로 수행되고 있는 교육 현황을 비교하고 분석하였다. 선진국은 주로 미국의 재난관리교육원(Emergency Management Institute)의 교육내용을 분석하였으며, 이에 더불어 미국 내에서 재난이나 안전관리에 관련된 교과목이 개설되어 학위를 수여하는 대학인 University of North Texas, Virginia Tech University, Oklahoma State University 등을 중심으로 분석하였다.분석 결과 미국을 비롯한 선진국에는 재난 및 안전관리를 담당하고 있는 공무원 중심의 교육과 관련직에 종사하기 위한 전문지식을 배우기 위한 학위과정으로 나누어져 상당히 체계적이고 자세한 교육이 이루어지고 있음을 알 수 있었다. 또한 재난대비를 위한 교육과 재난발생 시 행동요령, 안전행동요령 등 세분화된 교육이 실시되고 있었으며, 새로운 재난 형태인 기후변화까지를 포함하고 있는 것으로 조사되었다. 이는 향후 소방방재청 및 국내 대학에서도 새로운 교육과목 및 교육과정을 개설하기 위한 기본 지침이 될 수 있을 것으로 판단되었다. 또한 국내에 존재하는 교육과정에 중복이나 연계성 부족 등이 관찰되어 보다 장기간의 계획을 통해 체계적인 교육과정을 확립할 필요가 있음을 알 수 있었다.
우리나라의 자연재난은 대부분 홍수가 차지하지만 최근 들어, 우리나라에도 겨울철 폭설에 대한 관심이 높아지고 있어, 설해 위험도에 관한 연구가 늘어나고 있다. 그러므로 설해 위험도 분석기법에 대한 논의를 하고자 한다. 우리나라의 기존 설해 위험도 분석은 연최고 최심적설 시계열을 이용한 빈도해석기법이 주로 적용되어 왔다. 이는 과거의 자료를 바탕으로 설해 위험도를 예측하고자 하는 방법이다. 그러나 설해와 달리 다양한 방법으로 오랜 기간 동안 연구가 수행되어 온 홍수 위험도나 취약성 분석은 지형, 기후, 사회적인 요인이나 재해에 대한 노출 정도를 다양하게 고려하고, 각 인자들에 대한 전문가의 의견을 고려하는 델파이 기법이 많이 적용되어 왔다. 그러므로 설해위험도 역시 다양한 방법으로 분석되고 연구되어 비교되어야 한다고 판단하여, 본 연구에서는 설해위험도에 영향을 미치는 인자를 압력(Pressure), 현상(State), 반응(Response)으로 나누어 인자들을 고려하고 분석하는 PSR 방법을 적용하였다. 각 인자들의 가중치는 앞에서 설명한 바와 같이 델파이 기법을 적용하였다. 계산된 설해위험도는 기존의 방법과 비교하여 제시하였으며, 기후변화 등으로 인해 기후의 비정상성이 의심되는 환경을 고려하면, 설해위험도에 영향을 미치는 인자들을 고르게 고려하여 분석하는 PSR방법도 좋은 결과를 주는 것으로 나타났다. 향후에는 델파이기법으로 계산한 인자들의 가중치 적용 방법을 개선해야하여 객관성을 보다 확보해야 할 것으로 보인다.
저류함수법의 최적 매개변수를 추정하기 위한 연구는 오랜 동안 여러 가지 방법으로 수행되어왔다. 그러나 여전히 최적 매개변수를 결정하는 것은 시간이 오래 걸리는 일이며, 유역의 물리적인 특성과 상관없는 매개변수가 결과로 제시되는 경우가 잦다는 인식이 팽배하다. 본 연구에서는 저류함수모형의 연속방정식과 저류함수식을 충실히 분석하고 민감도 분석을 수행하였다. 그 결과, 많은 수의 국지해 중에서 유일해를 결정하는 방법을 제안할 수 있었다. 또한 유역의 직접유출 시작 시간을 고려하여 저류함수법의 지체시간을 결정할 수 있다는 것을 보였으며, 매개변수의 민감도 분석 결과, 모형의 지체시간을 결정하는 것이 매우 중요하다는 것을 알 수 있었다. 지체시간을 결정한 후에는 유일한 해를 비교적 쉽게 찾을 수 있었다. 그러므로 제안된 방법은 기존의 최적화 방법과 같이 시간이 오래 걸리지 않으며, 강우사상별로 비교적 정확한 매개변수를 산정할 수 있다는 장점이 있다. 제안된 방법을 이용하여 기존의 저류함수법의 매개변수를 추정하기 위한 다양한 방법 중 상수고정법을 수정하였으며, 그 결과 실무에서 업무효율을 높일 수 있을 것으로 기대된다. 또한 제안된 방법은 기존의 유출수문곡선의 계산오차에만 의지하여 매개변수를 최적화하는 방법과는 다르게 유역의 특성을 고려할 수 있다는 점에서 그 의미가 있다.
저류함수법은 오랜 기간 국내 주요하천의 홍수예보에 활용되어 오고 있다. 그럼에도 불구하고, 매개변수와 유출 특성의 관계를 정확히 규명하지 못하고 있어, 저류함수법에 대한 매개변수 최적화 연구들은 유역의 물리적인 특성을 반영하지 못한다는 논쟁이 있다. 이에 본 연구에서는 SCE-UA방법을 이용하여 저류함수법의 매개변수를 최적화하고, 매개변수의 변화에 따라 유출곡선이 달라지는 양상을 분석하였다. 분석대상 유역으로는 남한강 최상류지역인 정선과 영월 소유역을 선정하였으며, 상‧하류에 위치한 두 개의 유역을 단계적으로 최적화 하였다. 또한 매개변수와 오차평면과의 관계를 알아보기 위해 등고선도를 그려 매개변수가 달라짐에 따라 유출곡선 오차의 변화를 분석하였다. 본 연구는 최적화를 통해 매개변수의 특정 값을 제안하기보다는 실무에서 초기값으로 활용할 수 있는 매개변수의 가능한 범위를 제안하는데 그 목적이 있으며, 제안된 범위의 평균값을 사용하여 모의가 적절히 됨을 확인하였다. 또한 오차를 최소화하기 위해 무작위로 매개변수의 집합을 결정하기 보다는 유역의 물리적인 특성을 고려하여 가능한 매개변수를 고정하고, 매개변수의 변화가 오차에 미치는 영향을 등고선도를 이용하여 분석함으로서 매개변수가 모형의 결과에 미치는 영향에 대한 직관력을 제공하고자 하였으며, 그 결과가 실무에서 홍수예보 효율 제고에 기여할 수 있을 것으로 판단된다.
다양화되는 물 수요와 기상 이변 등의 영향으로 극심해지는 가뭄에 대비하여 대체 수자원의 확보는 수자원 연구의 매우 중요한 부분이 되었다. 다양한 대체 수자원 중 하수처리장의 방류수는 양호한 수질과 비교적 예측이 가능한 방류량으로 인해 농업용수나 공업용수 혹은 공공용수를 대체할 안정적인 수원으로 관심의 대상이 되고 있다. 본 연구에서는 하수처리수 재이용을 위해 미래의 불확실한 용수 수요량을 고려한 최소의 공사비를 최적화하는 방법을 이진변수를 가지는 2단계
홍수사상은 크게 첨두홍수량, 홍수용적, 지속기간 등과 같은 서로 상관된 세 가지의 요소로 정의될 수 있다. 그러나 그동안 수공학적 계획이나 설계, 운영 등을 위한 홍수빈도해석에서는 주로 첨두홍수량 한가지 요소에 초점을 맞추어 홍수빈도해석을 수행해 왔다. 이러한 단변량 홍수빈도해석은 서로 상관된 홍수사상 사이의 복잡한 확률적 거동을 분석하는 데 있어 한계를 가지고 있다. 따라서, 본 연구에서는 Gumbel 혼합모형을 이용한 이변량 홍수빈도해석을 수행하여
홍수기에 집중되는 유출량을 갈수기에 적절히 활용하기 위한 대표적인 구조물이 댐이다. 제한된 용수공급량을 적절히 분배해 용수수요량을 만족시키면서 미래 갈수기시 용수공급을 대비하여 댐 저류량을 조절하는 것이 댐 운영의 중요한 목적 중 하나이다. 본 연구에서는 갈수 시 댐 저류량에 따라 댐 계획방류량을 일정비율 줄여주는 Hedging Rule을 5단계로 적용하여 댐의 상시만수위 저류량에 대한 실제 저류량의 편차, 수요에 대한 용수공급 부족량, 그리고 하천유지
상수관망의 유지 관리를 위한 최적 압력 계측 위치 선정은 효율적인 상수관망 운영을 위해 필수적이다. 본 연구에서는 최적 압력 계측 위치 결정에 기존 연구의 단점을 보완하기 위하여 정보이론인 엔트로피 이론을 사용하였다. 기존의 방법은 실측자료를 이용한 검 보정이 필요로 하기에 체계적인 관리가 미흡한 지역에서는 적용이 어려운 단점이 있다. 또한 대부분의 연구가 상수관망 모형의 정확도를 높이며 측정비용을 최소화하는 절점을 제안하였으며, 이는 상수관망 유지 관
본 연구에서는 우리나라 홍수유출의 특성을 종합적으로 표현할 수 있는 홍수지수를 개발하였다. 홍수유출특성을 종합적으로 지수에 반영하기 위하여 유출곡선으로 표현되는 홍수유출의 특성을 홍수수문곡선의 상승률, 첨두유량, 홍수 응답시간, 첨두발생 전 홍수용적 등 4가지의 특성인자로 표현하였다. 이러한 유출특성인자를 객관적인 상대심도로 표현하기 위하여 본 연구에서는 특성인자의 분포함수를 표준정규분포함수로 변환하여 특성지수를 산정하였다. 본 연구에서 산정한 종합홍수
실험 또는 계측에 의해 관측된 관측치들은 종종 어떤 기준치 이하의 작은 값들이 기록되는데, 이들 기준치 이하의 값들이 크기는 미소할지라도 평균이나 분산 추정시 왜곡된 결과를 줄 수 있다. 그러나 우리 나라에서는 관측오차로 간주하여 N.D.(Not Detected)로 처리하는 것을 관례로 하고 있어 미소치들이 기록되지 않고 있다. EK라서 본 연구에서는 부여 취수장의 암모니아성 질소(NH-N)자료가 크기에 따라 분표형이 다름을 조사하고 그 분포를 구별할