Forward head posture (FHP) is a musculoskeletal disorder that causes neck pain. Several exercise interventions have been used in South Korea to improve craniovertebral angle (CVA) and relieve neck pain. There has been no domestic literature review study over the past 5 years that has investigated trends and effects of exercise intervention methods for CVA with neck pain. This domestic literature review aimed to evaluate the trends and effects of exercise interventions on CVA and neck pain in persons with FHP. A review of domestic literature published in Korean or English language between 2018 and 2022 was performed. Literature search was conducted on Google Scholar and Korea Citation Index by using the following keywords: “exercise,” “exercise therapy,” “exercise program,” “forward head posture,” and “neck pain.” Ten studies were included in this review. All of the studies showed positive improvements after intervention programs that included exercises. Notably, four of these studies demonstrated significant differences in results between the experimental and control groups. Among the 10 studies, nine measured visual analogue scale or numerical rating scale scores and reported significant reductions in pain following interventions, including exercise programs. Five of these studies showed significant differences in results between the experimental and control groups. Furthermore, six studies that used neck disability index exhibited a significant decrease in symptoms after implementing intervention programs that included exercise, and significant differences in results were found between the experimental and control groups. This domestic literature review provides consistent evidence to support the application of various exercise intervention programs to improve CVA and relieve neck pain from FHP. Further studies are warranted to review the effects of various exercise interventions on FHP reported not only in domestic but also in international literature.
Background: People these days use smartphone extensively as a means of diverse social activities, but excessive use of it has also created increasing forward head posture (FHP) with neck pain. To improve this FHP, neck stabilization exercise is necessary.
Objectives: This study was to investigate the effects of stabilization exercise using biofeedback on FHP subjects with neck pain.
Design: A non-randomized, controlled intervention study.
Methods: This study chose 18 college students in their 20s whose neck disability index (NDI) was equal to or higher than 10 and cranio-vertebral angle indicated FHP as experimental group. The control group selected 18 persons with no neck pain and a normal range of cranio-vertebral angle. The stabilization movement was performed by applying three phases of pressure, with low of 20 mmHg, intermediate of 25 mmHg, and high of 30 mmHg, using the Stabilizer. To check the effects of stabilization exercise according to pressure, the circumference of deep neck muscles was measured with ultrasonic waves, and the activity of surface muscle of sternocleidomastoid (SCM) was measured using electromyography (EMG).
Results: When the circumference of the deep neck flexor was analyzed according to the pressure change during stabilization exercise, the experimental group showed increase at all pressures. The activity of the SCM of the surface muscle increased in both groups as the pressure increased.
Conclusion: The application of stabilization exercise was found to be more effective on forward head posture subjects with neck pain at lower pressures.
Background: Tension-type headaches, which make up the highest proportion of headaches, are prone to develop into chronic tension-type headaches (CTTH). The characteristic of CTTH in patients is that the active myofascial trigger point (ATrP) which causes pain in the muscles of the back of the head is increased, compared to the normal headache and moves the head position forward.
Objective: The aim of this study was to investigate the effects of myofascial release (MFR) and posture correction in effectively improving neck function and sleep quality in the symptoms of CTTH patients.
Design: Observer-blind study
Methods: To reduce ATrP, MFR was applied and exercise was also applied to correct posture. The subjects of this study were 48 individuals randomly divided into three groups; The MFR group using the MFR technique; The MFR with exercise group subject to both the MFR technique and forward head position correction exercises (MFREx), and the control group. MFR and MFREx groups were given the relevant interventions twice a week for four consecutive weeks, and went through the number ATrPs, range of motion (ROM) of neck, Neck Disability Index (NDI) and the Pittsburgh Sleep Quality Index (PSQI) before and after the intervention. A physical therapist, who was fully familiar with the measuring methods of the equipment, was the measurer and not aware of the target's condition was blinded to take measurements only before and after intervention.
Results: There was a significant improvement in the ATrP, Neck ROM, NDI and PSQI in the group of patients to whom the MFR technique and MFREx were applied. MFREx was more effective in increasing neck mobility. Conclusions: According to this study, the application of MFR is effective in improving neck movement and sleep quality in chronic tension headache patients.
Background: Individuals with mechanical neck pain show biomechanical and neurophysiological changes, including cervical spine muscle weakness. As a result of deep muscle weakness, it causes stability disability and reduced upper thoracic spine mobility, which finally leads to functional movement restriction such as limited range of motion and dysfunction. Recent studies have shown that thoracic spine manipulation and mobilization could reduce symptoms of mechanical neck pain in patients.
Objects: The purpose of this study was to investigate the effects of thoracic mobility exercise on cervicothoracic function, posture feature, and pain intensity in individuals with mechanical neck pain.
Methods: The study subjects were 26 persons who were randomly assigned to the experimental (with thoracic mobility exercise) and control groups (without thoracic mobility exercise), with 13 subjects in each group. The cervicothoracic function (neck functional disability level and cervicothoracic range of motion), posture feature, and pain rating (using a quadrupled visual analogue scale [QVAS]) were measured before, after 3 weeks, and after 6 weeks.
Results: Statistically significant group-by-time interactions were found with repeated analyses of variance for the Korean neck disability index (KNDI), all cervical range of motion (CROM), all thoracic range of motion (TROM), cranial rotation angle, sagittal shoulder posture (SSP), and QVAS (p<.05). All groups showed significant improvements from all times in all the evaluated methods. The KNDI, CROM, TROM of left rotation, and SSP in the experimental group showed significant improvements after 3 weeks, and the TROM of the right rotation and QVAS in the experimental group showed significant improvements after 6 weeks when compared with the control group.
Conclusion: Thoracic mobility exercise during 6 weeks might be effective intervention to improve the functional level, posture feature, and QVAS pain rating for managing individuals with mechanical neck pain.
This study compared the effects of the initial head position (i.e., a HHP versus a relaxed head position) of subjects with and without a FHP on the thickness of the deep and superficial neck flexor muscles during CCF. The study recruited 6 subjects with a FHP and 10 subjects without a FHP. The subjects performed CCF in two different head positions: a HHP, with the head aligned so that the forehead and chin formed a horizontal line, and a relaxed head position (RHP), with the head aligned in a self-selected comfortable position. During the CCF exercise, the thickness of the longus colli (LCo) and the thickness of the sternocleidomastoid (SCM) were recorded using ultrasonography. The thickness of each muscle was measured by Image J software. The statistical analysis was performed with a two-way mixed-model analysis of variance. The thickness of the SCM differed significantly (p<.05) between the subjects with and without FHP. According to a post hoc independent t-test, the change in thickness of the SCM increased significantly during CCF in the subjects with FHP while adopting a HHP compared to that in the subjects without FHP. The change in thickness of the SCM was not significantly different between the two positions in subjects without FHP, and there was no significant change in thickness of the LCo muscle during the CCF exercise according to the initial position in both subjects with and without FHP. The results suggest that CCF should be performed in RHP to minimize contraction of the SCM in subjects with a FHP.