검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2022.05 구독 인증기관·개인회원 무료
        For producing radionuclides which were mostly used in medical purposes, for instance, Positron Emission Tomography (PET), there were about 1,200 PET cyclotrons operated in 95 countries based upon IAEA database (2020). Besides, including PET cyclotrons, demands for particle accelerators are continuously increasing. In Korea, about 40 PET cyclotrons are in operating phases (2020). Considering design lifetime (about 30–40 years) of cyclotrons, there will be demands for decommissioning cyclotron facilities in the near future. PET cyclotron produces radionuclides by irradiating charged particles to the targets. During this phase, nuclear reactions (18O(p,n)18F, 14N(d,n)15O etc.) produce secondary neutrons which induce neutron activation of accelerator itself as well as surrounding infrastructures (the ancillary subsystems, peripheral equipment, concrete walls etc.). Most of the ancillary systems including peripheral equipment can be neutron activated, since, most of them were made of steels. Steels like stainless steel or carbon steel may contain some impurities, typically cobalt. Although, there were several researches evaluating activation of concrete walls and accelerator components, estimating the activation and influence on neutron interaction of the other surrounding infrastructures were insufficient. In this study, by using computational neutron transport code (MCNP 6.2), and source term calculation code (FISPACT- II), we estimated neutron distribution in cyclotron vault and activation of ancillary subsystems including some peripheral equipment. Also, using Au foil and Cd cover, we measured thermal neutron distribution at 16 points on the concrete wall, and compared it to calculated results (MCNP). Even though, the compared results matches well, there was a discrepancy of neutron distributions between presence and absence of those equipment. Additionally, in estimating activation distributions by calculating, most of the steel-based subsystems including peripheral equipment should be managed by radioactive wastes after 20 years of operation. Throughout this study, we could find that influence on neutron interaction of those equipment can affect neutron distribution in concrete walls. This results vary the activation depth as well as location of the hot contaminated spot in concrete wall. For estimating or evaluating activation distributions in cyclotron facilities, there was need to consider some equipment located in cyclotron vault.
        4.
        1995.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        4,000원
        5.
        2019.12 KCI 등재 서비스 종료(열람 제한)
        양성자 치료기의 Passive Scattering System 노즐을 모의모사 하여 노즐 내 각 구성품에서 발생되는 중성자를 에너지별로 평가하였다. MCNPX code를 이용하여 치료환경에 사용되는 양성자 에너지 220 MeV, 도달 거리 20 cm, 6 cm 길이의 SOBP를 구현하고, 치료기 가동 시 발생하는 중성자를 각 구성품에 따라 종류별로 분류하였다. 양성자 가속기 구성품 중 산란체에서 중성자가 가장 높게 발생되었으며 양성자의 중심선 속에서부터 멀어질수록 중성자의 선속은 감소되었다. 본 연구는 양성자 가속기의 유지 보수 및 해체에 필수적인 방사화 평가를 진행하기 위한 기초자료로 활용할 수 있을 것으로 사료된다.