Hydroxyl radical (OH radical) is the most harmful free radical amongst the Reactive Oxygen Species (ROS) responsible for numerous diseases of DNA damage like mutagenesis, carcinogenesis and ageing. Therefore, it is important to find a suitable scavenger for OH radical. In the present contribution, we aim to investigate the ability of pristine armchair-SWCNT and B/N/P-doped armchair-SWCNT to scavenge OH radicals using DFT calculations. The calculations reveal that the B/Pdoped armchair-SWCNTs can act as a better scavenger for OH radical compared to pristine armchair-SWCNT but N-doped armchair-SWCNT does not act as a better scavenger for OH radical compared to pristine armchair-SWCNT. Furthermore, the developed scavenger is examined in terms of large-scale availability, biocompatibility, conductivity, stability and reactivity. For both in vivo and in vitro studies, the work is found to useful for enhancing SWCNT as a free radical scavenger.
This paper addresses the effect of dopants on the electronic properties of zigzag (8, 0) semiconducting single walled carbon nanotubes (SWCNTs), using extended Hückel theory combined with nonequilibrium Green’s function formalism. Through appropriate dopant concentrations, the electronic properties of SWCNTs can be modified. Within this context, we present our ongoing investigation on (8, 0) SWCNTs doped with nitrogen. Quantum confinement effects on the electronic properties of the SWCNTs have also been investigated. The obtained results reveal that the electronic properties of SWCNTs are strongly dependent on the dopant concentration and modification of electronic structures by hydrogen confinement.
Tantalum nitrides () have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.