검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2017.02 KCI 등재 서비스 종료(열람 제한)
        The Expanded Guide Circle (EGC) method has been originally proposed as the guidance navigation method for improving the efficiency of the remote operation using the sensory information. The previous algorithm is, however, concerned only for the omni-directional mobile robot, so it needs to suggest a suitable one for a mobile robot with non-holonomic constraints. The ego-kinematic transform is a method to map points of R2 into the ego-kinematic space which implicitly represents non-holonomic constraints for admissible paths. Thus, robots with non-holonomic constraints in the ego-kinematic space can be considered as “free-flying object”. In this paper, we propose an effective obstacle avoidance method for mobile robots with non-holonomic constraints by applying EGC method in the ego-kinematic space using the ego-kinematic transformation. This proposed method shows that it works better for non-holonomic mobile robots such as differential-drive robot than the original one. The simulation results show its effectiveness of performance.