The seismic deformation method is conventionally used as a seismic design for a multi-utility tunnel in Korea. In the seismic deformation method, the soil ground’s natural period is one of the most critical factors for calculating the ground displacement using cosine functions. Correction factors for the natural period and shear wave velocity have been used to consider the non-linearity of dynamic soil properties. However, the correction factors have been issued because the correction factors have not been sufficiently studied to consider Korea’s regional conditions. This paper aims to evaluate the natural periods for the seismic deformation method considering Korea’s ground conditions. Ground response analysis was performed using seven real earthquake records on twelve sites with different soil conditions where actual multi-utility tunnels are installed. As a result, natural periods of the sites were analyzed and new correction factors were proposed according to seismic performance and Korea’s regional conditions.
The metallicity distribution of globular clusters (GCs) provides a crucial clue for the star formation history of their host galaxy. With the assumption that GCs are generally old, GC colors have been used as a proxy for GC metallicities. Bimodal color distributions of GCs observed in most large galaxies have, for decades, been interpreted as bimodal metallicity distributions, indicating the presence of two populations within a galaxy. However, the conventional view has been challenged by a new theory that non-linear GC color-metallicity relations can cause a bimodal color distribution even from a single-peaked metallicity distribution. Using photometric and spectroscopic data of NGC 5128 GCs in combination with stellar population simulation models, we examine the effect of non-linearity in GC color-metallicity relations on transformation of the color distributions into the metallicity distributions. Although in some colors offsets are present between observations and models for the color-metallicity relations, their overall shape agrees well for various colors. After the offsets are corrected, the observed spectroscopic metallicity distribution is well reproduced via modeled color-metallicity relations from various color distributions having different morphologies. We discuss the implications of our results.