검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.05 구독 인증기관·개인회원 무료
        Kori-1 and Wolseong-1 nuclear power plants were permanently shut down in June 2017 and December 2019, and are currently in the preparation stage for decommissioning. In this regard, it is necessary to secure nuclear power plant decommissioning capacity in preparation for the domestic decommissioning marketplace. To address this, the Korea Research Institute of Decommissioning (KRID) was established to build a framework for the development of integrated nuclear decommissioning technology to support the nuclear decommissioning industry. The institute is currently under construction in the Busan-Ulsan border area, and a branch is planned to be established in the Gyeongju area. Recently, R&D projects have been launched to develop equipment for the demonstration and support verification of decommissioning technology. As part of the R&D project titled “Development and demonstration of the system for radioactivity measurement at the decommissioning site of a nuclear power plant”, we introduce the plan to develop a radioactivity measurement system at the decommissioning site and establish a demonstration system. The tasks include (1) measurement of soil radioactive contamination and classification system, (2) visualization system for massive dismantling of nuclear facilities, (3) automatic remote measurement equipment for surface contamination, and (4) bulk clearance verification equipment. The final goal is to develop a real-time measurement and classification system for contaminated soil at the decommissioning site, and to establish a demonstration system for nuclear power plant decommissioning. The KRID aims to contribute and support the technological independence and commercialization for domestic decommissioning sites remediation of nuclear power plant decommissioning site by establishing a field applicability evaluation system for the environmental remediation technology and equipment demonstration.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Fault activity acts as the greatest risk factor in relation to the stability of the radioactive waste disposal facilities and nuclear power plant site, and for this reason, geological studies on areas with past fault activity history must precede site evaluation studies. This study aims to trace the fault activity history of large fault zones, including the Yangsan fault in the southeastern part of the Korean Peninsula, where two major earthquakes occurred, and to obtain fault activity direction information that is the basis for stability evaluation. The 3D-Shape Preferred Orientation (SPO) of particles in the fault rock created by the earthquake was investigated to analyze the direction of fault plane activity, and the age of fault activity was estimated through Illite Age Analysis (IAA) analysis. It is expected that the large-scale fault activity information in the southeastern part of the Korean Peninsula obtained through the SPO and IAA analysis can be used as basic data for safety evaluation of existing or future nuclear power plants and radioactive waste facilities.