검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 구독 인증기관·개인회원 무료
        Nuclear weapon generates huge amount of radioactive fallout which is extremely dangerous. The fallout gradually falls to the ground and then covers every surface in city and nature. A hydrogel decontamination medium has been developed to clean the surface polluted by the fallout. The hydrogel is soluble in water so the used hydrogel can be simply removed from the surface by washing. However, significant amount of waste water, containing the radioactive fallout, is generated with this process. In this respect, it is necessary to secure alternative technical options for the used hydrogel recovery. In this study, a steam-suction process was suggested for the used hydrogel recovery. Contaminated stainless steel surface, with fixed simulated fallout particles, was prepared for test. The simulated fallout particles were obtained by high-temperature treatment of a mixture of natural soil, used concrete, and Fe2O3. The hydrogel, composed of poly-vinyl alcohol and borax, was spread onto the contaminated stainless steel surface. The hydrogel was soft at first and it gradually becomes rigid with time. The used hydrogel was recovered by suction with a simultaneous steam spraying to soften the rigid gel. As a result, the clean surface of the stainless steel without the simulated fallout particles was obtained, showing the feasibility of this technique for the used hydrogel recovery.
        2.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present multidisciplinary study, which is a nexus of engineering and political science, investigates how the modernization of Non-Strategic Nuclear Weapons (NSNWs) affects the IAEA safeguards system based on the likelihood of the use of nuclear weapons. To this end, this study examines the characteristics of modernized NSNWs using Monte Carlo techniques. The results thus obtained show that 10 kt NSNWs with a Circular Error Probability (CEP) of 10 m can destroy the target as effectively as a 500 kt weapon with a CEP of 100 m. The IAEA safeguards system shows that the Significant Quantity (SQ) of 1 of plutonium is 8 kg, a parameter that was established when strategic nuclear weapons were dominant. However, the results of this study indicate that in recent years, low-yield nuclear weapons such as NSNWs have been more strategically interesting than strategic nuclear weapons as NSNWs require less plutonium than strategic nuclear weapons. Therefore, we would like to conclude that reducing the SQ of plutonium can result in more robust safeguards and non-proliferation strategies.
        4,500원