Geologic disposal at deep depth is an acceptable way to dispose of high-level radioactive waste and isolate it from the biosphere. The geological repository system comprises an engineered barrier system (EBS) and the host rock. The system aims to delay radionuclide migration through groundwater flow, and also, the flow affects the saturation of the bentonite in the EBS. The thermal conductivity of bentonite is a function of saturation, so the temperature in the EBS is directly related to the flow system. High-temperature results in the two-phase flow, and the two-phase flow system also affects the flow system. Therefore, comprehending the influencing parameters on the flow system is critical to ensure the safety of the disposal system. Various studies have been performed to figure out the complex two-phase flow characteristics, and numerical simulation is considered an effective way to predict the coupled behavior. DECOVALEX (DEvelopment of COupled models and their VALidation against EXperiments) is one of the most famous international cooperating projects to develop numerical methods for thermo-hydro-mechanicalchemical interaction, and Task C in the DECOVALEX-2023 has the purpose of simulating the Fullscale Emplacement (FE) experiment at the Mont-Terri underground research laboratory. We used OGS-FLAC, a self-developed numerical simulator combining OpenGeoSys and FLAC3D, for the simulation and targeted to analyze the effecting parameters on the two-phase flow system. We focused on the parameters of bentonite, a key component of the disposal system, and analyzed the effect of compressibility and air entry pressure on the flow system. Compressibility is a parameter included in the storage term, defining the fluid storage capacity of the medium. While air entry pressure is a crucial value of the water retention curve, defining the relation between saturation and capillary pressure. From a series of sensitivity analyses, low compressibility resulted in faster flow due to low storage term, while low air entry pressure slowed flow inflow into the bentonite. Low air entry pressure means the air easily enters the medium; hence the flow rate becomes lower based on the relativity permeability definition. Based on the sensitivity analysis, we further investigate the effect of shotcrete around the tunnel and excavation damaged zone. Also, long-term analysis considering heat decay of the radioactive waste will be considered in future studies.