Reliable evaluation of radioactivity inventory for the nuclear power plant components and residual materials is very important for decontamination and decommissioning. This can make it possible to define optimum dismantling approaches, to determine radioactive waste management strategies, and to estimate the project costs reasonably. To calculate radioactivity of the nuclear power plant structure, various information such as interest nuclide, cross-section, decay constant, irradiation time, neutron flux, and so on is required. Especially irradiation time and neutron flux level are very changeable due to cycle specific fuel loading pattern, the plant overhaul, cycle length. However most of the radioactivity calculations have generally been performed assuming one representative or average neutron flux during the lifetime of the nuclear power plant. This assumption may include excessive conservatism because the radioactivity level has the characteristics of saturation and decay. Therefore, considering these variables as realistically as possible could prevent overestimation. In order to perform realistic radioactivity calculation, we developed monthly relative power contribution factor applying plant-specific operation history and cycle-specific neutron flux. The factors were applied to the radioactivity calculation. The calculation results ware compared with measured values of the neutron monitors that were actually installed and withdrawn from the nuclear power plant. As a result of the comparisons, there are good agreements between the calculated values and measured values. These accurate calculation results of radioactivity could contribute to the establishment of radioactive waste dismantling strategies, the classification of radioactive waste, and the deposit of disposal costs for safe and reasonable decommissioning of the nuclear power plant.
In Korea, the NUREG-0017 methodology based on realistic model for reactor coolant concentrations are used to estimate the annual radioactive effluent releases for normal operation of nuclear power plant. The realistic model to estimate the radionuclide concentrations in reactor coolant is formulated as a standard, ANSI/ANS-18.1. This standard has provided a set of the reference radionuclide concentrations and adjustment factors for estimating the radioactivity in the principal fluid systems of target plant. Since ANSI/ANS-18.1 was first published in 1976, it was revised in 1984, 1999, 2016, and most recently in 2020. Therefore, this study analyzed revision history of assessment methodology of radioactive source term of light water reactors, which is ANSI/ANS-18.1. Assessment methodology of radioactive source term given ANSI/ANS-18.1 is by using radionuclide concentrations for reactor coolant and steam generator fluid of the reference plant and adjustment factors, which is modifying radioactive source term according to differences in design parameters between reference plant and target plant. There are three type of reference plant: PWR with u-tube steam generator, PWR with once-through steam generator, and BWR. This study analyzed for PWR with u-tube steam generator. Although the standard was revised, evaluation methodology and formula of adjustment factor have been retained, but some of items have been revised. First revision item is reduction of the number of radionuclides and decrease of radioactive concentration in reactor coolant. In the 1976 version of the standard, there were 71 target radionuclides, but the target nuclides have reduced to 57 in 1984 and 56 after 1999. In the case of radioactive concentration in reactor coolant, as the version of standard was updated, the radioactive concentration of 18 nuclides in 1984, 14 nuclides in 1999, and 25 radionuclides in 2016 was decreased. Most of the radionuclides with decrease radioactivity concentration were fission product, it is resulted from improvement of nuclear fuel performance. Second revision item is change of adjustment factors. After the revision in 2016, the adjustment factors for zinc addition plants using natural or depleted zinc are changed. This study analyzed revision history of evaluation methodology of radioactive source term of light water reactors. Furthermore, result of this study will be contributed to the improvement of understanding of assessment methodology and revision history for the radioactive source term.