breakdown of tooth-supporting tissues, producing dentition loss. Porphyromonas gingivalis (P. gingivalis), a Gramnegative anaerobic rod, is one of the major pathogens associated with periodontitis. Neutrophils are first line defense cells in the oral cavity that play a significant role in inflammatory response. Xylitol is a known anti-caries agent and has anti-inflammatory effects. In this study, we conducted experiments to evaluate anti-inflammatory effects of xylitol on P. gingivalis infected neutrophils for possible usage in prevention and treatment of periodontal infections. P. gingivalis was intraperitoneally injected and peritoneal lavage was collected for cytokine determination. For in vitro study, neutrophils were collected from mouse peritoneal cells after zymosan injection or bone marrow cells. Neutrophils were stimulated with live P. gingivalis and ELISA was used to determine the effect of xylitol on P. gingivalis induced cytokine production. IL-1β, IL-6, TNF-α concentration and neutrophil population in the peritoneal lavage was increased in P. gingivalis-infected mouse. Peritoneal cells infected with live P. gingivalis revealed significantly increased production of IL-1β, IL-6 and TNF-α at multiplicity of infection of 10. Neutrophils from bone marrow and peritoneal lavage revealed increased production of IL-1β, IL-6 and TNF-α. Xylitol significantly mitigated P. gingivalis induced cytokine production in neutrophils. Findings indicate that xylitol is an anti-inflammatory agent in neutrophils infected with live P. gingivalis, that suggests its use in periodontitis management.
Background: Periodontitis is generally a chronic disorder characterized by the breakdown of tooth-supporting tissues. P. gingivalis, a Gram-negative anaerobic rod, is one of the major pathogens associated with periodontitis. Frequently, P. gingivalis infection leads to cell death. However, the correlation between P. gingivalis–induced cell death and periodontal inflammation remains to be elucidated. Among cell deaths, the death of immune cells appears to play a significant role in inflammatory response. Thus, the aim of this study was to examine P. gingivalis–induced cell death, focusing on autophagy and apoptosis in THP-1 cells. Methods: Human acute monocytic leukemia cell line (THP-1) was used for all experiments. Autophagy induced by P. gingivalis in THP-1 cells was examined by Cyto ID staining. Intracellular autophagic vacuoles were observed by fluorescence microscopy using staining Acridine orange (AO); and 3-methyladenine (3-MA) was used to inhibit autophagy. Total cell death was measured by LDH assay. Cytokine production was measured by an ELISA method. Results: P. gingivalis induced autophagy in an MOI-dependent manner in THP-1 cells, but 3-MA treatment decreased autophagy and increased the apoptotic blebs. P. gingivalis infection did not increase apoptosis compared to the control cells, whereas inhibition of autophagy by 3-MA significantly increased apoptosis in P. gingivalis-infected THP-1 cells. Inhibition of autophagy by 3-MA also increased total cell deaths and inflammatory cytokine production, including IL-1β and TNF-⍺. Conclusion: P. gingivalis induced autophagy in THP-1 cells, but the inhibition of autophagy by 3-MA stimulated apoptosis, leading to increased cell deaths and pro-inflammatory cytokines production. Hence, the modulation of cell deaths may provide a mechanism to fight against invading microorganisms in host cells and could be a promising way to control inflammation.
Human gingival fibroblasts (hGFs) were reported to play an important role in inflammatory reactions to lipopolysaccharide (LPS) from P.gingivalis in the periodontal connective tissue. Although the biostimulatory effects of hyperbaric oxygen therapy, such as anti-inflammatory activity, have been reported, the pathological mechanism is not completely understood. This study examined the changes in the inflammatory cytokine profiles, which are produced after exposure to hyperbaric oxygen in P.gingivalis LPS-treated human gingival fibroblasts, and subsequently to examine the mitogen activated protein kinase (MAPK) pathway involved in cytokine production. Gingival fibroblasts with or without P.gingivalis LPS were exposed to hyperbaric oxygen, and the cytokine profiles in the supernatant were observed using a human inflammation antibody array. The expression of cyclooxyginase-2 (COX-2) protein, phosphorylation of extracellular signal-regulated kinase (ERK1/2), p38, and c-Jun-N-terminal kinase (JNK) MAPK by western blot analysis, and the amount of prostaglandin E2 (PGE2) in the supernatant by an enzyme-linked immunoassay were determined. COX-2 protein expression and PGE2productionwereincreasedsignificantlyintheP. gingivalis LPS-treated group, and were decreased by treating P. gingivalis LPS with hyperbaric oxygen. Treatment of P. gingivalis LPS in the gingival fibroblasts led an increase in the amount of pro-inflammatory-related cytokines interleukin-6 (IL-6) and IL-8 released, whereas hyperbaric oxygen inhibits the irrelease. Ananalysis of the MAPK signal transduction showed that hyperbaric oxygen induced a significant decrease in the level of P38 phosphorylation regardless of the presence or absence of LPS. In addition, hyperbaric oxygen promoted JNK phosphorylation, significantly in the presence of LPS. Hyperbaric oxygen can inhibit pro-inflammatory cytokines and mediate the MAPK signal pathway, and appears to be useful as an anti-inflammatory tool.
Periodontal disease, a form of chronic inflammatory bacterial infectious disease, is known to be a risk factor for cardiovascular disease (CVD). Porphyromonas gingivalis has been implicated in periodontal disease and widely studied for its role in the pathogenesis of CVD. A previous study demonstrating that periodontopathic P. gingivalis is involved in CVD showed that invasion of endothelial cells by the bacterium is accompanied by an increase in cytokine production, which may result in vascular atherosclerotic changes. The present study was performed in order to further elucidate the role of P. gingivalis in the process of atherosclerosis and CVD. For this purpose, invasion of human aortic smooth muscle cells (HASMC) by P. gingivalis 381 and its isogenic mutants of KDP150 (fimA⁻), CW120 (ppk⁻) and KS7 (relA⁻) was assessed using a metronidazole protection assay. Wild type P. gingivalis invaded HASMCs with an efficiency of 0.12%. In contrast, KDP150 failed to demonstrate any invasive ability. CW120 and KS7 showed relatively higher invasion efficiencies, but results for these variants were still negligible when compared to the wild type invasiveness. These results suggest that fimbriae are required for invasion and that energy metabolism in association with regulatory genes involved in stress and stringent response may also be important for this process. ELISA assays revealed that the invasive P. gingivalis 381 increased production of the proinflammatory cytokine interleukin (IL)-1β and the chemotactic cytokines (chemokine) IL (interleukin)-8 and monocyte chemotactic (MCP) protein-1 during the 30-90 min incubation periods (P<0.05). Expression of RANTES (regulation upon activation, normal T cell expressed and secreted) and Toll-like receptor (TLR)-4, a pattern recognition receptor (PRR), was increased in HASMCs infected with P. gingivalis 381 by RT-PCR analysis. P. gingivalis infection did not alter interferon--inducible protein-10 expression in HASMCs. HASMC nonspecific necrosis and apoptotic cell death were measured by lactate dehydrogenase (LDH) and caspase activity assays, respectively. LDH release from HASMCs and HAMC caspase activity were significantly higher after a 90 min incubation with P. gingivalis 381. Taken together, P. gingivalis invasion of HASMCs induces inflammatory cytokine production, apoptotic cell death, and expression of TLR-4, a PRR which may react with the bacterial molecules and induce the expression of the chemokines IL-8, MCP-1 and RANTES. Overall, these results suggest that invasive P. gingivalis may participate in the pathogenesis of atherosclerosis, leading to CVD.